A STUDY TO REDUCE THE LEVEL OF CHLORINATION OF EXAMINATION GLOVES WHILE KEEPING THE GLOVE MOISTURE CONTENT (WET GLOVE) LOW

By

Gamini Kanumaratne

A STUDY TO REDUCE THE LEVEL OF CHLORINATION OF EXAMINATION GLOVES WHILE KEEPING THE GLOVE MOISTURE CONTENT (WET GLOVE) LOW

By

Gamini Karunaratne

This thesis was submitted for the partial fulfillment of the requirement for the Master Degree of Science in Polymer Science and technology of the Faculty of Applied Science, University of Sri Jayawardanapura, Sri Lanka.

October, 2007

The work described in this thesis was carried out by me under the supervision of Dr. Laleen Karunanayaka and the report on the same has not been submitted to any other university for another degree.

G. Karunaratne

I certify that the above statement made by candidate is true and this thesis is suitable for submission to the university for the purpose of evaluation.

Dr. Lateen Karunanayaka

Contents

Topic		Page
Title page		i
List of Table		viii
		x
List of Figures		×
Abbreviations		xi
Acknowledgment		xii
Abstract		xiv
		01
1.Introduction		O1
		01
1.1 Back ground to the study	£	01
1.1.1 Identification of the problem		
1.2 Aims and Objectives of the study		03
1.2.1 Overall aim		03
1.2.2 Objectives	170	03
1.3 Literature survey		03
1.3.1 Leaching		04
1.3.2 Gloves and Powder		06
1.3.3 The surface modification of the article		07
1.3.4 Surface chlorination		08
1.3.4.1 General		08
1.3.4.2 Steps of the chlorination process		11
M07		
2.0 Experimental		16
2.1 Materials		16

Горіс		Page
2.2 Analytical Instrum	ents and Machinery used	16
2.3 Methods	9	16
2.3.1 Quality evalua	tion of centrifuged latex	19
2.3.1.1 Determ	ination of NH ₃ content	19
2.3.1.2 Determ	ination of Mechanical Stability Time	20
2.3.1.3 Determ	ination of VFA number	21
2.3.1.4 Determ	ination of Mg ²⁺ content	23
2.3,1.5 Viscosi	ty	25
2.3.2 Compounding		26
2.3.3 Maturation pro	cess of gloves	26
2.3.4 Quality evaluat	ion of powdered gloves	26
2.3.4.1 Permane	ent set value	27
2.3.4.2 Tensile	strength	. 28
2.3.4.3 Assessr	nent of residual Ca ²⁺ content in glove	30
2.3.5 Chlorination	of powdered gloves in the chlorinator	31
2.3.6 Determination	of effect of EDTA addition in the pre wash s	tep and changing
the chlorine co	oncentration in chlorination step by changing	Cl ₂ /H ₂ O flow rate 32
2.3.7 Determination	n of physical properties of chlorinated gloves	33
2.3.7.1 The mea	suring of the sticky glove percentage	33
2.3.7.2 The Mea	asuring of the Wet Glove Percentage	34
3.0 Results & Discu	ssion	35
3.1 Physioch	emical quality evaluation of gloves	35
3.2 Chlorina	tion process of gloves	35
3.3 EDTA tr	ial –1 (Pilot trial)	44
3.4 EDTA tr	ial –2	45
3.5 EDTA tr	ial –3	46

	Topic	Page
	3.6 EDTA trial –4	46
	3.7 EDTA trial –5	46
	3.8 EDTA trial -6	47
	3.9 General Discussion	54
	3.10 Conclusion	56
4.0	References	57

LIST OF TABLES

Table			Page
Table –M1	Latex Specification and Test Results		17
Table - M2	Laboratory Chemicals		17
Table – M3	Rubber Processing Chemicals	2	18
Table – M4	Physical Properties of Chlorine Gas		18
Table -3.1a	Test parameter before chlorination of Trial -1		36
Table -3.1b	Chlorination conditions of Trial –1		36
Table 3.1c	Test parameter after chlorination of Trial –1		36
Table -3.2a	Test parameter before chlorination of Trial –2		37
Table -3.2b	Chlorination conditions of Trial –2	•	37
Table -3.2c	Test parameter after chlorination of Trial –2		37
Table -3.3a	Test parameter before chlorination of Trial –3		38
Table -3.3b	Chlorination conditions of Trial –3		38
Table -3.3c	Test parameter after chlorination of Trial -3		38
Table -3.4a	Test parameter before chlorination of Trial -4		39
Table -3.4b	Chlorination conditions of Trial –4		39
Table -3.4c	Test parameter after chlorination of Trial -4		39
Table -3.5a	Test parameter before chlorination of Trial –5		40
Table -3.5b	Chlorination conditions of Trial –5		40
Table -3.5c	Test parameter after chlorination of Trial –5		40
Table -3.6a	Test parameter before chlorination of Trial –6		41

Table		Page
Table -3.6b	Chlorination conditions of Trial –6	41
Table -3.6c	Test parameter after chlorination of Trial -6	41
Table 7	The average test parameters of the gloves before the chlorination process	42
Table 8	The average test parameters of the gloves after chlorination process	42
Table 9	The tensile value of the gloves after the chlorination at different chlorine concentrations and different EDTA additions in chlorination process	42
Table 10	The wet glove % of the gloves after the chlorination at different chlorine concentrations and different EDTA additions in chlorination process	43
Table 11	The average reduction of calcium iron content of gloves before and after chlorination process in series of trials	43

LIST OF FIGURES

Figure		Page
Figure- I(1)	Chlorination steps in chlorinator	15
Figure- 1	The Ca ²⁺ ion content on the glove surface before and after	
	chlorination	48
Figure- 2	The variance of TS of the test series vs. additions of EDTA	L o
	at different Cl level	49
Figure- 3	The average TS of glove film vs. addition of EDTA	
	before and after Chlorination	50
Figure- 4	EB of test series vs addition of EDTA	51
Figure- 5	The average wet glove % in the trial series vs additions	
9	of EDTA	52
Figure- 6	Wet glove % vs EDTA additions at different Cl	
	Levels	53

ABBREVIATIONS

TS Tensile Strength

SV Permanent Set Value

SG Sticky Glove

WG Wet Glove

EAB Elongation At Break

EDTA Ethylene Diammine Tetra Acetic acid

ppm parts per million

F/L Field Latex

C/L Centrifuged Latex

[Ca²⁺] Calcium ion

ACKNOLEDGEMENT

I wish to express my most sincere appreciation and gratitude to my supervisor, Dr Laleen Karunanayaka, Senior Lecturer, Department of Chemistry, University of Sri Jayawardanapura, Sri Lanka for the generous ideas, valuable advices and guidance given, in conducting this study. His unhesitant help and co-operation at all times has contributed immensely to make this study in success. It is my bounden duty to thank him most sincerely.

I extend my gratitude to Mr. Damitha Dharmasena who was the former Executive Director of Hanwella Rubber Products (Pvt) Ltd. for sponsoring me to follow this M.Sc. (Polymer Science and Technology) course.

I especially, wish to express my deepest sense of gratitude to Mrs. Theja Herath The Senior Research Officer, Industrial Technology Institute for the valuable advice, kind guidance and professional expertise in writing my Thesis.

My special thanks go to Mrs. Chandani Somaratne, Lecturer, University of Moratuwa, who provides kind assistance during period of writing up of my Thesis.

I wish to thank Mr. Nilaksha Pushpakumara who is the Factory Manager of Hanwella Rubber Products (pvt) Ltd and my colleagues for their kind helps in various ways and their friendly co-operation during my research.

Especially I extend my thank to Miss. Wathsala Perera, Compounding Executive of Hanwella Rubber Produts (pvt) Ltd for her kind assistances and generous contribution in various ways.

ABSTRACT

The primary purpose of modifying the surface of the examination gloves by chlorination process is to reduce the tackiness, which is a characteristic of the rubber. This also reduces the friction between the rubber film and other surfaces with which it comes into contact.

One of the major problems in chlorinated examination gloves is, wetting when stored after manufacture. Wetting of the gloves is caused by absorption of moisture by Ca²⁺ ions present on the surface of articles. Exposing the latex articles to the long hot water leaching process and also to the higher degree of chlorination can minimize this wetting problem. A long hot water leaching process is expensive. The higher degree of chlorination seriously affects the gloves quality as they cause degradation of gloves.

This trial experiments were carried in a glove manufacturing plant. Initially the same quality gloves were manufactured in order to subject to chlorination trials. There were six lots of gloves chlorinated with varying dosage of EDTA, 0.00g, 100g, 200g, 300g, 400g and 500g respectively at initial pre wash step in chlorination process. In one series of trial lot, the chlorine concentration was changed to 873, 764, 655, 546, 436, 327, 218 and 109 ppm respectively while keeping the rate addition of EDTA constant. The batch size was 5000 gloves per one lot in chlorination cycle.

Addition of EDTA dosage in pre wash step in chlorination process enhanced the reduction of Ca²⁺ ions content in a glove. The Ca²⁺ ions concentration of a glove is reduced due to the removal or deactivation of the Ca²⁺ ions by EDTA which leads to lesser moisture

adsorption to the surface of a glove. Our results showed that the dosage of chlorine used in chlorination process could be reduced, without effecting physical properties of the gloves.

Finally this study could be concluded as, the thin rubber articles could be chlorinated at low degree of chlorination without wetting and enhancing the good physical properties by the addition of EDTA before washing.