Effectiveness of coconut fibre media in biological wastewater

treatment for rubber factory effluent

by

Kudaligama Vithanage Vidya Sagari Kudaligama

Thesis submitted to the

University of Sri Jayawardenapura

for the award of the

Degree of Master of Philosophy in Botany

2004

DECLERATION BY AUTHOR

The work described in this thesis was carried out by me under the supervision of Mr. W. M. Thurul, Thurul Safe Environment, Chilaw Road, Nainamadama, Prof. P. A. J. Yapa, Senior Lecturer, Uni. of Sri Jayawardenapura, Nugegoda and Dr. C. K. Jayasinghe, Deputy Director Research, Rubber Research Institute, Dartonfield, Agalawatta and a report on this has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

K.V.V.S.Kudaligama

DECLERATION BY SUPERVISORS

"We certify that the above statement made by the candidate is true and this thesis is suitable for submission to the University for the purpose of evaluation"

) huh.

Mr. W. M. Thurul, Thurul Safe Environment, Research & Development Implementation Bureau, Chilaw Road,

Nainamadama

7 . 0

Prof. P. A. J. Yapa, Senior Lecturer, Uni. of Sri Jayawardenapura, Nugegoda

C.e.

Dr. C. K. Jayasinghe,

Deputy Director Research,

Rubber Research Institute of Sri Lanka

Dartonfield,

Agalawatta

Dedicated to my loving parents,

7

۲

Saminda and Kavindu

TABLE OF CONTENTS

		Page No.
	LIST OF FIGURES	I
	LIST OF TABLES	IV
	ACKNOWLEDGMENT	VII
	ABREVIATIONS	VIII
	ABSTRACT	IX
13.7	INTRODUCTON	1
2	REVIEW OF LITERATURE	6
2.1	Raw Rubber production and waste generation	6
2.1.1	Latex crepe Industry	6
2.1.2	Latex concentrate Industry	9
2.1.3	Ribbed smoked sheet (RSS) Industry	11
2.2	Biological wastewater treatment	12
2.2.1	Aerobic treatment	13
2.2.2	Anaerobic treatment	14
2.2.2.1	Microbiology and biochemistry of anaerobic treatment	14
2.3	Stationary media in biological wastewater treatment	19
2.3.1	Coir fibre as a stationary media in wastewater treatment	22
2.3.1.1	Coir fibre	23
2.3.2	Bio-Brush media	24
2.3.2.1	Preparation of Bio-brush media	24
2.3.2.2	Features of Bio-brush media	25

2.4	Biological wastewater treatment processes	27
2.4.1	Anaerobic processes	27
2.4.1.1	Anaerobic filters (AF)	30
2.4.1.2	Covered Activated Ditch (CAD) system	35
2.4.1.3	Anaerobic pond/lagoon process	36
2.4.1.4	Other anaerobic unit processes	38
2.5	Raw rubber factory wastewater management	39
2.5.1	Biological treatment methods	39
2.5.2	Other management possibilities	42
3	MATERIALS AND METHODS	44
3.1	Test reactor designing	44
3.1.1	Designing of Bio-brush media	44
3.1.1.1	Approximate specific surface area (SSA) of coir fibre	44
3.1.1.2	Preparation of Bio-brush	44
3.1.2	Civil work of test reactors	47
3.1.3	Preparation of anaerobic seed sludge	50
3.1.4	Start-up of reactors	50
3.1.5	Feed characteristics and organic loading	51
3.2	Experimental work	51
3.2.2	Effect of different combinations of SSAs diameters and OLRs on	51
	rubber factory effluent treatment	
3.2.2.1	The temporal behaviour of the COD removal efficiency	53
3.2.2.2	The COD removal efficiency at maturation of test reactors	53

<

-

-

3.2.3	Effect of inorganic nutrients (nitrogen) and processing chemicals 54	
	on rubber factory effluent treatment	
3.2.3.1	Nitrogen content of effluent	55
3.2.3.2	Chemicals, used during processing	55
3.2.4	Variation of chemical and microbiological parameters	56
3.2.4.1	pH of test reactors	56
3.2.4.2	Suspended solids (SS) content of effluent	56
3.3	Analytical assessments	56
3.3.1	Chemical Oxygen Demand (COD)	56
3.3.2	pH	57
3.3.3	Suspended solids content	57
3.3.4	Total nitrogen content	57
4	RESULTS	58
4 4.1	RESULTS Effect of different combinations of specific surface areas (SSAs),	58 58
	Effect of different combinations of specific surface areas (SSAs),	
	Effect of different combinations of specific surface areas (SSAs), diameters under different organic loading rates (OLRs) on	
4.1 4.1.1	Effect of different combinations of specific surface areas (SSAs), diameters under different organic loading rates (OLRs) on rubber factory effluent treatment	58
4.1 4.1.1	Effect of different combinations of specific surface areas (SSAs), diameters under different organic loading rates (OLRs) on rubber factory effluent treatment Temporal behaviour of COD removal efficiency of combination I	58
4.1 4.1.1 4.1.1.1	Effect of different combinations of specific surface areas (SSAs), diameters under different organic loading rates (OLRs) on rubber factory effluent treatment Temporal behaviour of COD removal efficiency of combination I 0.5 COD kg/m ³ /d organic loading rate	58 58 59
4.1 4.1.1 4.1.1.1 4.1.1.2	Effect of different combinations of specific surface areas (SSAs), diameters under different organic loading rates (OLRs) on rubber factory effluent treatment Temporal behaviour of COD removal efficiency of combination I 0.5 COD kg/m ³ /d organic loading rate 1.0 COD kg /m ³ /d organic loading rate	58 58 59 61
4.1 4.1.1 4.1.1.1 4.1.1.2 4.1.1.3	Effect of different combinations of specific surface areas (SSAs), diameters under different organic loading rates (OLRs) on rubber factory effluent treatment Temporal behaviour of COD removal efficiency of combination I 0.5 COD kg/m ³ /d organic loading rate 1.0 COD kg /m ³ /d organic loading rate 2.5 COD kg /m ³ /d organic loading rate	5858596163
 4.1 4.1.1 4.1.1.1 4.1.1.2 4.1.1.3 4.1.1.4 	Effect of different combinations of specific surface areas (SSAs), diameters under different organic loading rates (OLRs) on rubber factory effluent treatment Temporal behaviour of COD removal efficiency of combination I 0.5 COD kg/m ³ /d organic loading rate 1.0 COD kg /m ³ /d organic loading rate 2.5 COD kg /m ³ /d organic loading rate 3.5 COD kg /m ³ /d organic loading rate	 58 58 59 61 63 65

۲

.4

4.1.2.3	2.5 COD kg /m ³ /d organic loading rate	72
4.1.2.4	3.5 COD kg /m ³ /d organic loading rate	
4.1.3	Temporal behaviour of COD removal efficiency of combination III	77
4.1.3.1	0.5 COD kg/m ³ /d organic loading rate	77
4.1.3.2	1.0 COD kg /m ³ /d organic loading rate	79
4.1.3.3	2.5 COD kg /m ³ /d organic loading rate	81
4.1.3.4	3.5 COD kg /m ³ /d organic loading rate	83
4.1.4	The COD removal efficiency at maturation of test reactors	85
4.1.4.1	Effect of 10 cm diameter Bio-brush media under different SSAs	85
4.1.4.2	Effect of 10 cm diameter Bio-brush media under different OLRs	87
4.1.4.3	Effect of 15 cm diameter Bio-brush media under different SSAs	90
4.1.4.4	Effect of 15 cm diameter Bio-brush media under different OLRs	92
4.1.4.5	Effect of 100 m ² /m ³ SSA of Bio-brush media under different	94
	diameters	
4.1.4.6	Effect of 100 m^2/m^3 SSA of Bio-brush media under different OLRs	96
4.1.5	Summary of COD removal efficiency	98
4.2	Effect of inorganic nutrients (nitrogen) and processing	100
	chemicals on rubber factory effluent treatment	
4.2.1	Nitrogen content of effluent	100
4.2.2	Chemicals used during processing	102
4.3	Variation of chemical and microbiological parameters	104
4.3.1	pH of test reactor	104
4.3.2	Suspended solids content of effluent	106
5	DISCUSSION	108

*

6	CONCLUSION	118
7	LITERATURE CITED	119
8	LIST OF PUBLICATIONS	129
9	APENDICES	130

LIST OF FIGURES

-

4

•

•

Fig. 1	Flow diagram for waste generation in latex crepe industry (Anon, 1992b)	7
Fig. 2	Flow diagram for waste generation in latex concentrate industry (Anon,	
	1992c)	
Fig. 3	Flow diagram for waste generation in RSS industry (Anon, 1992b)	12
Fig. 4	Metabolic steps and microbial groups involved in anaerobic digestion	15
Fig. 5	Different types of media used in wastewater treatment systems	
Fig. 6	Bio-brush	26
Fig. 7	Cross section of ditches showing possible arrangements of Bio-brushes	36
Fig. 8	CAD treatment systems operating at different factory sites	37
Fig. 9	Bio-brushes with different SSAs of media and diameters used in test	46
	reactors	
Fig. 10	Schematic diagram of a test reactor	47
Fig. 11	Flow diagram of the experimental setting	48
Fig. 12	Ditch type test reactors	49
Fig. 13	Laboratory scale 54 L test reactor	54
Fig. 14	COD removal efficiency of reactors with 10cm diameter Bio-brush media	59
	run under 0.5 COD kg/m ³ /d OLR	
Fig. 15	COD removal efficiency of reactors with 10cm diameter Bio-brush media	61
	run under 1.0 COD kg/m ³ /d OLR	
Fig. 16	COD removal efficiency of reactors with 10cm diameter Bio-brush media	63
	run under 2.5 COD kg/m ³ /d OLR	
Fig. 17	COD removal efficiency of reactors with 10 cm diameter Bio-brush media	65
	run under 3.5 COD kg/m ³ /d OLR	

		68
Fig. 18	COD removal efficiency of reactors with 15 cm diameter Bio-brush media	
	run under 0.5 COD kg/m ³ /d OLR.	
Fig. 19	COD removal efficiency of reactors with 15 cm diameter Bio-brush media	70
	run under 1.0 COD kg/m ³ /d OLR	
Fig. 20	COD removal efficiency of reactors with 15 cm diameter Bio-brush media	72
	run under 2.5 COD kg/m ³ /d OLR	
Fig. 21	COD removal efficiency of reactors with 15 cm diameter Bio-brush media	74
	run under 3.5 COD kg/m ³ /d OLR	
Fig. 22	COD removal efficiency of reactors with 100 m^2/m^3 SSA of Bio-brush	77
	media run under 0.5 COD kg/m ³ /d OLR	
Fig. 23	COD removal efficiency of reactors with 100 m^2/m^3 SSA of Bio-brush	79
	media run under 1.0 COD kg/m ³ /d OLR	
Fig. 24	COD removal efficiency of reactors with 100 m^2/m^3 SSA of Bio-brush	81
	media run under 2.5 COD kg/m ³ /d OLR	
Fig. 25	COD removal efficiency of reactors with 100 m^2/m^3 SSA of Bio-brush	83
	media run under 3.5 COD kg/m ³ /d OLR	
Fig. 26	Effect of different SSAs of 10 cm diameter Bio-brush media on COD	85
	removal efficiency under different OLRs	
Fig. 27	Effect of different OLRs on COD removal efficiency under different SSAs	88
	of media with 10 cm diameter of Bio-brush	
Fig. 28	Effect of different SSAs of 15 cm diameter Bio-brush media on COD	90
	removal efficiency under different OLRs	
Fig. 29	Effect of different OLRs on COD removal efficiency under different SSAs	92
	of media with 15 cm diameter of Bio-brush	
Fig. 30	Effect of different diameters of Bio-brush media with 100 m^2/m^3 SSAs	94
	on COD removal efficiency under different OLR	

4

.

4

.

II

Fig. 31	Effect of different OLRs on COD removal efficiency under different	96
	diameters of Bio-brush media with 100 m^2/m^3 of SSA	
Fig. 32	COD removal efficiency of the reactors run with normal effluent and	101
	nitrogen content corrected effluent	
Fig. 33	COD removal efficiency of the reactors run with chemical free effluent	103
	and effluent with processing chemicals	
Fig. 34	pH of test reactor No 10/200 under four different OLRs	105
Fig. 35	Suspended solids of effluent of reactor No. 10/200 under four different	106
	OLRs	

Fig. 36 Mean COD removal efficiency (>80%) of different test reactors under 113 different OLRs

.

-

.

 Fig. 37
 Flow chart showing overall findings for a complete biological treatment
 130

 system using coconut fibre media for rubber factory effluent

LIST OF TABLES

Table 1	Wastewater characteristics of crepe rubber manufacturing (Anon,	8
	1992b)	
Table 2	Average composition of combined wastewater and waste loads in	10
	concentrated latex production (Anon, 1992c)	
Table 3	Chemical composition of coir (Bhowmick & Debnath, 1984)	23
Table 4	Typical requirements on high-rate anaerobic systems, Weiland &	28
	Rozzi (1991)	
Table 5	Benefits and limitations of an Anaerobic treatment of wastewater	29
	Lettinga <i>et.al</i> , (1980)	
Table 6	Characteristics of AF reactors	30
Table 7	Specifications of Bio-brushes used in different test reactors	45
Table 8	Different combinations of SSAs set with 10 and 15 cm diameter Bio-	52
	brush medium	
Table 9	The combination of different diameters set under 100 $\ensuremath{m^2/m^3}$ SSA of	52
	Bio-brush medium	
Table 10	Different organic loads introduced	53
Table 11	Rate of COD rem% of 10 cm diameter Bio-brush media, under 5	60
	different SSAs at 0.5 COD kg/m ³ /d OLR.	
Table 12	Rate of COD rem% of 10 cm diameter Bio-brush media, under 5	62
	different SSAs at 1.0 COD kg/m ³ /d OLR.	
Table 13	Rate of COD rem% of 10 cm diameter Bio-brush media, under 5	64
	different SSAs at 2.5 COD kg/m ³ /d OLR	

Rate of COD rem% of 10 cm diameter Bio-brush media, under 5 66 Table 14 different SSAs at 3.5 COD kg/m³/d OLR. 69 Rate of COD rem% of 15 cm diameter Bio-brush media, under 4 Table 15 different SSAs at 0.5 COD kg/m³/d OLR. Rate of COD rem% of 15 cm diameter Bio-brush media, under 4 71 Table 16 different SSAs at 1.0 COD kg/m³/d OLR. Rate of COD rem% of 15 cm diameter Bio-brush media, under 4 73 Table 17 different SSAs at 2.5 COD kg/m³/d OLR. Rate of COD rem% of 15 cm diameter Bio-brush media, under 4 75 Table 18 different SSAs at 3.5 COD kg/m³/d OLR. Rate of COD rem% of reactors with 100m²/m³ SSA of Bio-brush Table 19 78 media run under 0.5 COD kg/m³/d OLR. Rate of COD rem% of reactors with 100 m²/m³ S of Bio-brush media 80 Table 20 run under 1.0 COD kg/m³/d OLR. Rate of COD rem% of reactors with 100 m²/m³ SSA of Bio-brush 82 Table 21 media run under 2.5 COD kg/m³/d OLR. Rate of COD rem% of reactors with 100m²/m³ SSA of Bio-brush 84 Table 22 media run under 3.5 COD kg/m³/d OLR. Comparison of mean COD rem% for different OLRs for fixed SSA 86 Table 23 with 10 cm diameter Bio-brush media Comparison of mean COD rem% for different SSA with 10 cm 88 Table 24 diameter Bio-brush media for fixed OLRs Comparison of mean COD rem% for different OLRs for fixed SSA 91 Table 25 with 15 cm diameter Bio-brush media Comparison of mean COD rem% for different SSA with 15 cm 93 Table 26 diameter Bio-brush media for fixed OLRs

1

V

- Table 27Comparison of mean COD rem% for different OLRs for fixed95diameter of Bio-brush media with 100 m²/m³ SSA
- Table 28Comparison of mean COD rem% for different diameters of Bio-brush97media with 100 m²/m³ SSA for fixed OLRs
- Table 29Summary of COD removal efficiency

×

e.

•

•

98

ACKNOWELEDGEMENT

۲

ø

The valuable guidance and advice of Mr M.T Warnakula, Prof. P.A.J.Yapa and Dr. C. K. Jayasinghe as supervisors throughout this study is greatly acknowledged.

I am very much grateful to Dr. L.M.K Tillekeratne, Director, RRISL, and the members of RRB for granting me permission for carrying out this project.

Thanks are also due to Mrs. W. Wijesuriya for statistical analysis and also the guidance and the encouragement given by her during the study is greatly appreciated.

I wish to record my special thanks to Mr. W. Amarathunga for photographing, Mrs. P. Amarasekera for word processing, Mrs Ramani Amarathunga for helping in literature surveying and Mr Upali Kannangara for helping in preparing the manuscript.

I wish to express my sincere thanks to Mrs. G.V.L. Nilmini, Mr. P.D.J. Rodrigo, Mr. D. Ramawikrama and Mr. W Kulathunga of Biochemistry Department, RRISL, for their continuous support during the study. The help of Dr. Priyanthi, Sarojini, Vidura and Priyantha is also gratefully acknowledged.

Finally, I am very grateful to my parents and Saminda for their encouragement and moral support during the study.

ABREVIATIONS

-

4

*

-

AF	Anaerobic filters
BOD	Biological oxygen demand
CAD	Covered activated ditch system
COD	Chemical oxygen demand
d	Day
DMRT	Duncan multiple range test
DO	Dissolved oxygen
DRC	Dry rubber content
HDPE	High density polyethylene
MLSS	Mixed liquor suspended solids
OLR	Organic loading rate
PVC	Poly vinyl chloride
RCCR	Rubberized coir carrier reactor
RSS	Ribbed smoked sheet
SS	Suspended solids
SSA	Specific surface area
TSS	Total suspended solids
UASB	Up-flow anaerobic sludge blanket
UV	Ultra violet
vss	Volatile suspended solids

Effectiveness of coconut fibre media in biological wastewater treatment for rubber factory effluent

Kudaligama Vithanage Vidya Sagari Kudaligama

ABSTRACT

The Central Environmental Authority of Sri Lanka has identified the natural rubber industry as one of the most significant water polluting industries in Sri Lanka and it discharge about 18 million kg of COD to the environment annually (Anon, 1992b). With the new legislations, almost all the rubber processing factories are faced with difficulties of finding out a suitable treatment for their factory effluent.

Maintaining an adequate amount of active biomass is the key to a safe, stable operation of a biological treatment system. Bio-brush media was developed to become a low cost media with all ideal characteristics that lead to a low cost anaerobic treatment system known as Covered Activated Ditch (CAD) system. Therefore, the main objective of this study was aimed to optimise the treatment efficiency of CAD systems by selecting the best packing strategy of Bio-brush medium.

Five (50, 100, 150, 200 and 250 m^2/m^3) and four (25, 50, 75 and 100 m^2/m^3) specific surface areas (SSA) were set with 10cm and 15cm diameter Bio-brush media respectively and were subjected to run under four different organic loading rates (0.5,

IX

1.0, 2.5 and 3.5 $CODkg/m^3/d$). The reactors with the highest SSA always showed fast start-up and highest treatment efficiencies. At the same time $100m^2/m^3$ SSA was set with three diameters (5, 10 and 15 cm) of Bio-brushes and run under the same organic loads introduced in the above, to see the effect of diameter of Bio-brush media on treatment efficiency.

When increasing the SSA of media, the COD removal efficiency increased under all four OLRs. The treatment efficiency of rectors decreased with increasing OLRs. COD removal efficiency increased when the diameter of the medium is increased except under 1.0 COD kg/ m^3/d OLR. During this OLR the highest performance was shown by the Bio-brush media with 10 cm diameter.

With the results obtained, the reactor set with 200 m^2/m^3 SSA using 10 cm diameter Bio-brush media run under 1.0 CODkg/m³/d OLR was chosen as the best combination for rubber factory effluent treatment. COD, pH and SS of reactor with above combination was about 100 mg/L, 6.7 - 7.2 and 26 - 43 mg/L (except in day 38) respectively after maturation and these values were within the maximum desirable levels stipulated by the Central Environmental Authority of Sri Lanka.

Nitrogen content of the effluent and the reactor pH affected the treatment efficiency. Chemicals, which were used during rubber processing also lowered the treatment efficiency. Long start-up periods observed during the treatment with higher organic loading rates could be lowered by pH correction of the reactors. Continuous removal of the suspended solids from the reactors avoids clogging of the reactors.