"The work described in this thesis was carried out by me under the supervision of Dr.: ((MInss)) SMLD.N. Wickramassinghe and Professor (Mrs.) P. Angunawela and a report on this has not been submitted to any University for another degree"

Baurayake.

Mrs. M.D.P. Samaranayake.

"We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation"

S. M. N. Wickramasigh

Dr. (Mrs.) S.M.D.N. Wickramasinghe. Senior Lecturer, Dept. of Biochemistry, Faculty of Medical Sciences, Uni. of Sri Jayawardenepura.

SAL JAYEWARDENEPURA OF WILA GONA ANKA

P. Angunawh

Prof. (Mrs.) P. Angunawela, Senior Lecturer, Dept. of Pathology, Faculty of Medicine, Uni. of Colombo.

PROF. PREETHIKA ANGUNAWELA MBBS, DIP (Path.) MD, MIAC, FRCPA, MRCPath (UK) Effects of garlic *(Allium sativum)* on chemicallyinduced hepatocarcinogenesis in normal and hypercholesterolaemic Wistar rats

Mala Damayanthi Perera Samaranayake

Thesis submitted to the University of Sri Jayawardenepura for the award of the degree of Master of Philosophy in Biochemistry on 05th June 2000.

CONTENTS

	Table of co	ontents		i-v	rii
	List of Ta	bles		vii	ii-ix
	List of Fig	ures		X	
	List of Pla	tes		xi	
	ACKNOWI	LEDGEMENTS		xii	-xiv
	ABSTRAC	ſ		xv-	-xvi
1. IN	TRODU	CTION			
1.1	Backgrour	d and justification			1-2
1.2	Scope of the	e study			3-4
2. LI	TERATI	RE REVIEW			
2.	1 Garlic				5
	2.1.1 B	otanical aspects			6
		ajor Chemical constituents			6-7
		edicinal and other uses			
	2.1.3.1	Introduction			8
	2.1.3.2	Carminative and stimulative properties			8
	2.1.3.3	Expectorant properties			9
	2.1.3.4	Hypolipaemic and hypocholesterolaemic			
		Properties			9
	2.1.3.5	Anti-thrombotic properties			9
	2.1.3.0	Anti-hypertensive properties			9
	2.1.3.7	Anti-microbial properties			10

2.1.3.8 Anthelmintic properties	10
2.1.3.9 Anti-turberculosis properties	10
2.1.3.10 Antioxidative properties	11
2.1.3.11 Hypoglycaemic properties	11
2.1.3.12 Malignant diseases	11-13
2.1.3.13 Other uses in medicine	13-14
Carcinogenesis	15

2.2.1	Intr	oduction to carcinogenesis	16
2.2.2	Car	cinogen	16
2.2	.2.1	Chemical carcinogen	16-17
2.1	.2.2	Physical carcinogen	17
2.1	.2.3	Biological carcinogen	17
2.2.3	Me	chanism of carcinogenesis	
2.2	.3.1	Two step carcinogenesis	18
2.2	.3.2	Multi stage carcinogenesis	18-19
2.2.4	Die	tary fat and carcinogenesis	
2.2	2.4.1	Introduction	19
2.2	2.4.2	Hepatocarcinogenesis	20

2.3 Tumour markers

2.1

2.3.1	Definition	21
2.3.2	Features of a tumour marker	21
2.3.3	Classification	22
2.3	3.3.1 Enzymes	22
	2.3.3.1.1 Introduction	22

2.3.3.1.2 Gluutathione S-transferase (GST)

2.3.3.1.2.1	Introduction	23
2.3.3.1.2.2	Classification	23-24
2.3.3.1.2.3	Structure	24
2.3.3.1.2.4	Functions	24
2.3.3.1.	2.4.1 As a tumour marker	24-26
2.3.3.1.	2.4.2 Detoxification Properties	26
2.3.3.1.	2.4.3 Other functions	26
2.3.3.2 Oncofetal an	ntigen	
2.3.3.2.1 Introd	uction	26-27
2.3.3.3 Hormones a	nd Hormone Receptors	
2.3.3.3.1 Introd	uction	27-28
2.3.3.4 Carbohydrat	te Markers	
2.3.3.4.1 Introd	uction	28
2.3.3.5 Genetic man	kers	
2.3.3.5.1 Introd	luction	29-30
2.3.3.5.2 Onco	genes	29
2.3.3.5.3 Supp	ressor genes	29

iii

3. MATERIALS AND METHODS

3.1 Materials

3.1.1 Plant Material	31
3.1.2 Animal Model	31
313 Chemicals	31

3.2 Methods

3.2.1 Development of a hypercholesterolaemic	
rat model	
3.2.1.1 Collection of blood samples and separation	
of serum	33
3.2.1.2 Quantitative determination of total serum	
cholesterol	33
3.2.1.2.1 Preparation of cholesterol reagent	34
3.2.1.2.2 Procedure	34
3.2.2 Liver Medium-Term Bioassay Protocol	
3.2.2.1 Experimental design	36-37
3.2.2.2 Partial hepatectomy	37
3.2.2.2.1 Procedure	38-40
3.2.2.3 Collection and fixation of liver tissues	41
3.2.2.3.1 Preparation of 10% buffered formalin	41
3.2.2.4 Processing, embedding and cutting of liver	
tissues	42
3.2.2.5 Gluutathione S-transferase-P (GST-P)	
immunohistochemistry	41-42
3.2.2.5.1 Procedure	42

3.2.2.5	5.2 Preparation of phosphate buffered	
	saline(PBS)	42
3.2.2.6	Haematoxylin & Eosin staining	
3.2.2.6	6.1 Procedure	43
3.2.2.7	Histopathological examination	43
3.2.2.8	Dosage and administration of	
	garlic (Allium sativum)	44
3.2.2.9	Induction of carcinogenicity	44
3.2.2.10	Statistical analysis	44

3.3 Experimental

Deve	lopment of a Hypercholesterolaemic rat model	
1.1	Experiment I; Effects of cholesterol-enriched diets	
	(0.25%, 0.5%, & 1%)on the level of serum cholesterol	
	in male Wistar rats.	45
.1.2	Experiment II; Effects of treatment with 0.5%	
	cholesterol-enriched diet for six weeks on	
	level of serum cholesterol in male Wistar rats.	45
Effec	ts of garlic on chemically-induced hepatocarcinogenesis in	
male	Wistar rats.	
3.2.1	Experiment III: Effects of garlic on chemically-	
	induced hepatocarcinogenesis in normal	
	Wistar rats.	46
3.3.	2.1.1 Animal experiment	46-47
.3.2.2	Experiment IV: Effects of garlic treatment on	
	Chemically-induced hepatocarcinogenesis in	
	hypercholesterolaemic male Wistar rats	47
3.3	.2.2.1 Animal Treatments	47-48
	1.1 5.1.2 Effec male 3.2.1 3.3. 3.2.2	 1.1 Experiment I; Effects of cholesterol-enriched diets (0.25%, 0.5%, & 1%)on the level of serum cholesterol in male Wistar rats. 5.1.2 Experiment II; Effects of treatment with 0.5% cholesterol-enriched diet for six weeks on level of serum cholesterol in male Wistar rats. Effects of garlic on chemically-induced hepatocarcinogenesis in male Wistar rats. 3.2.1 Experiment III: Effects of garlic on chemically- induced hepatocarcinogenesis in normal Wistar rats. 3.3.2.1.1 Animal experiment 3.2.2 Experiment IV: Effects of garlic treatment on Chemically-induced hepatocarcinogenesis in

v

4. RESULTS

4.1	Deve	elopment of a hypercholesterolaemic rat model	
4.1	.1	Effects of cholesterol-enriched diets	
		(0.25%,0.5% &1%)	
	4.1.1	.1 On the serum cholesterol level	49
	4.1.1	.2 On average body weight	49
4.1	.2	Effects of treatment with 0.5% cholesterol-	
		enriched diet for six weeks on the serum cholesterol level	
	4.1.2	.1 On the of serum cholesterol level	52
	4.1.2	2.2 On average body weight	52
4.2	Effe	cts of garlic on DEN-induced hepatocarcinogenesis	
	in no	ormal Wistar rats	
4.2	2.1	Inhibition of glutathione s-transferase placental	
		form positive (GST- P^+) foci	55-57
4.2	2.2	Histopathological evidence	58-61
4.2	2.3	Body weights	58,62
4.3	Effe	cts of garlic on DEN-induced	
	hepa	tocarcinogenesis in hypercholesterolaemic	
	Wist	tar rats	
4.3	3.1	Inhibition of GST-P ⁺ foci induction	63-65
4.	3.2	Histopathological evidence	66-69
4.:	3.3	Body weights	70-70
4.:	3.4	Level of mean total serum cholesterol	70,72
4.4	Con	parison of $GST-P^+$ foci induction in normal	
	and	hypercholesterolaemic Wistar rats	- x-
4.	4.1	Number and area of $GST-P^+$ foci induction	73-75

5.	DISCUSSION	76-83
6.	CONCLUSIONS	84
7.	SUGGESIONS FOR FURTHER STUDIES	85
8.	REFERENCES	86-108

LIST OF TABLES

Table 2.1	Enzymes as tumor Markers	22
Table 2.2	Oncofetal antigens as tumor Markers	27
Table 2.3	Hormones and Hormone receptors as tumor Markers	28
Table 2.4	Carbohydrate markers as tumor Markers	28
Table 2.5	Genetic markers as tumor Markers	30
Table 3.1	Feed formulae for standard rat feed	32
Table 4.1	Effects of cholesterol-enriched diets containing different amounts of cholesterol on level of serum cholesterol in Wistar rats	50
Table 4.2	Effects of cholesterol-enriched diets on mean body weights of Wistar rats	51
Table 4.3	Effects of treatment of 0.5% cholesterol-enriched diets for six week on the mean body weights of Wistar rats for six weeks	54
Table 4.4	Effects of Garlic on GST-P ⁺ liver foci in DEN-induced hepatocarcinogenesis in normal Wistar rats.	56
Table 4.5	Effects of Garlic treatment on the histopathology of liver sections of normal Wistar rats	61
Table 4.6	Effects of Garlic on mean body weights of normal Wistar rats in DEN-induced hepatocarcinogenesis	62

Table 4.7	Effects of Garlic on GST-P ⁺ liver foci in DEN-induced	
	hepatocarcinogenesis in hypercholesterolaemic Wistar	
	Rats	64
Table 4.8	Effects of Garlic treatment on histopathology of liver sections	
	of hypercholesterolaemic Wistar rats	67
Table 4.9	Effects of Garlic on mean body weights of	
	hypercholesterolaemic Wistar rats in DEN-induced	
	hepatocarcinogenesis	71
Table 4.10	Effects of Garlic on the level of serum total cholesterol	
	in hypercholesterolaemic Wistar rats	72

LIST OF FIGURES

Figure 3.1	Standard curve for serum total cholesterol	35
Figure 3.2	Assay Method (Liver Medium-term bio assay Protocol)	37
Figure 3.3	Assay Method (Modified Liver Medium-term bio assay Protocol)	46
Figure 4.1	Effects of 0.5% cholesterol-enriched diet on the level of serum cholesterol in Wistar rats.	53
Figure 4.2	Effects of cholesterol-enriched diet on number of DEN-induced liver GST-P ⁺ foci in Wistar rats	74
Figure 4.3	Effects of cholesterol-enriched diet on area of DEN-induced liver GST-P ⁺ foci in Wistar rats	75

LIST OF PLATES

Plate 2.1	Bulbs of Garlic (Allium sativum)	5
Plate 2.2	The Crab and Cancer	15
Plate 3.1	Procedure of partial hepatectomy in rat.	
	$(A_{3,1}-G_{3,1})$	39-40
Plate 4.1	Immunohistochemical Staining of DEN-induced	
	glutathione S-transferase placental form	
	(GST-P ⁺) foci, (haematoxylene counterstain) in	
	normal Wistar rats. (A _{4.1} , B _{4.1})	57
Plate 4.2	Representative microphotographs showing the	
	effects of garlic treatment on histopathalogy	
	of liver tissues of normal Wistar rats.	
	$(A_{4,2}-C_{4,2})$	59-60
Plate 4.3	Immunohistochemical Staining of DEN-induced	
	glutathione S-transferase placental form positive	
	(GST-P ⁺) foci, (haematoxylene counterstain) in	
	hypercholesterolaemic Wistar rats. (a _{4.3} , b _{4.3})	65
Plate 4.4	Representative microphotographs showing the	
	effects of garlic treatment on histopathalogy	
	of liver tissues of hypercholesterolaemic	
	Wistar rats. $(a_{4,4} - c_{4,4})$	68-69

AKNOWLEDGEMENTS

M y senior supervisor, Dr. (Mrs.) S.M.D.N. Wickramasinghe, Senior Lecturer, Dept of Biochemistry, Faculty of Medical Sciences, University of Sri JayEwardenepura, is greatly acknowledged for introducing me into the field of cancer research and for her valuable advice, encouragement, friendly supervision and creating a stressless research environment.

I wish to express my foremost appreciation to my co-supervisor Prof. (Mrs.) P. Angunawela, Senior lecturer, Dept of Pathology, Faculty of Medicine, University of Colombo who supervised me, and made arrangements to get an exposure to the field of histopathology and immunohistochemistry.

My grateful thanks to Dr. (Mrs.) S. Jayasekara, Head/ Animal center, Medical Research Institute, Sri Lanka, who was my un-official supervisor, trained me in all aspects of rat handling and also for her ever-ready support throughout this study. It should be mentioned that this research would not have been made possible if her support and facilities in animal center were not made available.

My grateful thanks to Prof. E. R, Jansz, Professor and former Head, Dept of Biochemistry, Faculty of Medical Sciences, University of Sri Jayawardenepura, Sri Lanka for introducing me into the field of Biochemistry, providing me the carcinogen (diethylnitrosoamine) to initiate the study at the initial stages and for allowing me to use all available facilities at the department of Biochemistry. Thanks are also due to Dr (Miss) M. Tammitiyagoda, Veterinary Surgeon, Animal Center, Medical Research Institute (M.R.I.), Sri Lanka, for her valuable support specially during animal surgery, collecting samples, in training of animal handling and also for memorable happy times, snacks ,tea etc. I must thank Mr.S. S. Sisira Kumara and Mr. Jayasiri ,Animal Center, M.R.I. for their assistance and all kinds of help given me at the M.R.I., Sri Lanka.

My grateful thanks are also due to Prof. S. Fukushima, Professor, Department of Pathology, Osaka City University, Japan, for providing the expensive glutathione S-transferase antibody free of charge and literature and information related to immunohistochemical assay method.

I wish to thank Dr. S. Iwai, Department of Pathology, Osaka City University, Japan, for reading immunohistological tissue sections.

Thanks are also due to Prof. (Mrs.) C. Pathirana, Head/ Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Sri Lanka, for her encouragement and allowing me to use departmental facilities in preparing this thesis and Dr.(Miss.) K. Jayathilake, senior lecturer Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Sri Lanka, for her valuable comments and encouragement in making this thesis a success. I wish to thank Dr (Mrs.) M.V. Werasooriya, Head/ Department of Parasitology, Faculty of Medicine, University of Ruhuna for giving me permission to use research microscope in taking microphotographs. Also I would like to thank Miss. M. Mudalige, Department of Parasitology, Faculty of Medicine, University of Ruhuna, for her everready help in taking microphotographs.

My gratitude also goes to Oushada Lanka (pvt.) Ltd., Katuwawala, Sri Lanka for providing garlic powder.

My thanks also go to Mrs S. Ekanayake, Department of Biochemistry, Faculty of Medical sciences, University of Sri Jayawardenepura, Sri Lanka for her comments in preparing this thesis.

Staff of the Department of Biochemistry, Faculty of Medical sciences, University of Sri Jayawardenepura and laboratory staff of the Department of Pathology, Faculty of Medicine, University of Colombo, Sri Lanka are greatly appreciated for their assistance during this study.

Mr. H. Pathirana is acknowledged for his valuable assistance in making computer settings of the thesis.

Finally, I wish to thank my husband for his ever- ready support and my dear son who had to spend his infancy with less attention and love from me.

xiv

ABSTRACT

Hepatocellular carcinoma is one of the most common cancers in the modern world and it is prevalent in Asia. Environmental and dietary factors play an major role in the development of many cancers. Dietary modification can also play important role in reducing the risk of cancer. Garlic (*Allium sativum*) is a well known medicinal herb and a food item that has been used all over the world since pre historic times. Previous studies using cancer cell lines and animal models have indicated that garlic and some of its sulfur compounds are potential anticarcinogens.

The present study was carried out to investigate the effects of a therapeutic dose (20mg /kg body wt./day) of garlic on chemically-induced hepatocarcinogenesis in normal and hypercholesterolaemic Wistar rats. In the fist phase of this study the inhibitory effects of a therapeutic dose (20mg /kg body wt./day) of garlic on diethylnitrosamine (DEN)- induced neoplasia of the liver were examined in normal male Wistar rats. Medium-term Bio assay system of Ito based on the two step model of hepatocarcinogenesis was used as the assay method.

In phase II, the effects of garlic on hepatocarcinogenesis in hypercholesterolaemic Wistar rats were investigated. The selectiuon of hypercholesterolaemic model was based on the available evidence for the relationship between dietary fat and the development of cancer. Hypercholesterolaemic model was developed by feeding rats with a 0.5% cholesterol-enriched diet for a period of two weeks. Rats having serum cholesterol level > 120 mg/dl. were considered as hypercholesterolaemic (normal range 75±10 mg/dl) and the cholesterol-enriched diet was continued throughout the

experiment. Carcinogenic potential was scored by comparing the number and area of induced Glutathione S-transferase placental form positive $(GST-P^+)$ liver foci as well as histopathological examination of liver sections.

Daily treatment with garlic markedly reduced the number and area of $GST-P^+$ foci (48% inhibition and 49% inhibition respectively) as compared with the control group of animals receiving distilled water. Significant inhibition of induction of $GST-P^+$ foci (34% inhibition in number and 44% inhibition in area) due to garlic treatment was also observed in the hypercholesterolaemic group of rats . However percentage inhibition was higher in garlic treated normal rats than garlic treated hypercholesterolaemic rats. Also it was evident from this study that hypercholesterolaemic rats are more susceptible to induction of liver $GST-P^+$ foci.

Results of GST-P⁺ expression were supplemented by histopathological examination of liver sections of garlic treated normal as well as hypercholesterolaemic Wistar rats. Granular and vacuolar degeneration were used as parameters in assessing histopathological alterations. In normal rats, garlic treatment reduced the pathological alterations in liver sections caused by DEN. Similar results were obtained from experiments with hypercholesterolaemic rats.

Hence the results of this study provide strong supportive evidence for the anticarcinogenic activity of garlic.

xvi