# EFFECTS OF PLANTING DENSITY ON GROWTH AND YIELD OF THREE DIFFERENT CLONES OF RUBBER

(Hevea brasiliensis Muell. Arg.)

by

#### TIKIRIYADURA UDAYA KELUM SILVA

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Forestry on 2007

### **Candidate's Declaration**

The work described in this thesis was carried out by me under the supervision of Dr V.H.L. Rodrigo of the Rubber Research Institute of Sri Lanka and Dr. S.M.C.U.P. Subasinghe of the University of Sri Jayewardenepura. This has been based on the independent work carried out by me and a report on this has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

Strim.

T.U.K. Silva

#### Supervisor's Certification

We certify that this thesis meets the required standard for the degree of Master of Philosophy.

Dr. S.M.C.U.P. Subasinghe

Forestry & Environmental Science Department,

University of Sri Jayawardenepura,

Nugegoda,

Sri Lanka.

Dr. V.H.L. Rodrigo

Biochemistry & Physiology Department, Rubber Research Institute, Agalawatta, Sri Lanka.



### <u>Dedication</u>

To my father, Edmond Silva and mother, Thilaka Silva

who

guide and energize me to face every challenge of the life

# CONTENTS

| Page                                                               |          |
|--------------------------------------------------------------------|----------|
| i                                                                  |          |
| V                                                                  | ii       |
| LIST OF TABLES                                                     | iii      |
| LIST OF FIGURES                                                    |          |
| LIST OF PLATES                                                     |          |
| LIST OF ABBREVIATIONS                                              | <b>i</b> |
| ACKNOWLEDGEMENT                                                    | kiv      |
| ABSTRACT                                                           | XV       |
| CHAPTER 1: GENARAL INTRODUCTION                                    | 1        |
| CHAPTER 2: LITERATURE REVIEW                                       | 4        |
| 2.1 History and origin of the rubber                               | 4        |
| 2.2 Botanical aspects and agro- ecological requirements            | 5        |
| of rubber tree                                                     |          |
| 2.3 Anatomy and physiology of rubber bark and wood                 | 8        |
| 2.3.1 Properties and uses of rubber wood                           | 10       |
| 2.3.2 Tree volume and standing density                             | 12       |
| 2.3.3 Tree diameter                                                | 14       |
| 2.3.4 Tree heights                                                 | 15       |
| 2.3.5 Form factor                                                  | 16       |
| 2.3.6 Determination of cubic volume of important solid by formulas | 17       |
| 2.3.7 Important factors associated with timber productivity        | 17       |

| 2.4  | Agro-ecological impact to the biosphere                      | 18 |
|------|--------------------------------------------------------------|----|
| 2.5  | Crop improvements                                            | 20 |
|      | 2.5.1 Developments in rubber wood industry                   | 21 |
|      | 2.5.2 Development in rubber latex production                 | 21 |
|      | based on planting density                                    |    |
|      | i. Effects of the planting density on                        | 23 |
|      | number of productive trees                                   |    |
|      | a. The optimum mature density                                | 23 |
|      | b. The density at planting (Initial planting density)        | 24 |
|      | c. Planting pattern at a given density                       | 25 |
|      | ii. Economic aspects of planting density                     | 26 |
| СНАР | TER 3: GENERAL MATERIALS AND METHODS                         | 28 |
| 3.1  | Experimental site                                            | 28 |
|      | 3.1.1 Treatments and statistical design                      | 29 |
|      | 3.1.2 Initial establishment of rubber plants                 | 29 |
| 3.2  | Crop management                                              | 30 |
| 3.3  | Growth assessments                                           | 31 |
| 3.4  | Latex yield assessments                                      | 32 |
| 3.5  | Data analysis                                                | 32 |
| 3.6  | Cost-benefit analysis                                        | 33 |
|      | 3.6.1 Determination of costs per hectare of growing rubber   | 33 |
|      | 3.6.2 Determination of the income from latex and rubber wood | 34 |
|      |                                                              |    |

| CHAPT | ER 4: GROWTH PERFORMANCE OF RUBBER                                | 35 |
|-------|-------------------------------------------------------------------|----|
| 4.1   | Introduction                                                      | 35 |
| 4.2   | Methodology                                                       | 37 |
|       | 4.2.1 Growth of rubber trees                                      | 37 |
|       | i. Tree girth and rate of girthing                                | 37 |
|       | ii. Measurements on bark development                              | 38 |
|       | 4.2.2 Tree distribution in different girth categories             | 38 |
|       | i. Assessment on distribution of tappable                         | 38 |
|       | and under- girth trees                                            |    |
|       | ii. Temporal changes in the planting density                      | 40 |
|       | 4.2.3 Ground cover made by rubber canopy                          | 40 |
|       | i. Mean leaf area and leaf count                                  | 41 |
|       | ii. Leaf area index                                               | 41 |
| 4.3   | Results                                                           | 43 |
|       | 4.3.1 Growth assessment                                           | 43 |
|       | i. Tree girth and rate of girthing                                | 43 |
|       | ii. Thickness of the virgin bark of different                     | 44 |
|       | planting densities                                                |    |
|       | 4.3.2 Effect of the planting density on distribution of trees     | 46 |
|       | and on the temporal changes                                       |    |
|       | i. Effect of the planting density on tree distribution            | 46 |
|       | ii. Temporal changes in different planting densities              | 48 |
|       | 4.3.3 Ground cover assessment with respect to the leaf area index | 51 |
| 4.4   | Discussion                                                        | 53 |

| CHAP | TER 5:      | EFFECTS OF RUBBER DENSITY ON                                                 | 58   |
|------|-------------|------------------------------------------------------------------------------|------|
| 5.1  | Introductio | TIMBER PRODUCTION<br>n                                                       | 58   |
|      | 5.1.1       | Rubber tree as an alternative for fuel and timber                            | 58   |
|      | 5.1.2       | Determination of stem volume                                                 | 60   |
| 5.2  | Methodolog  | 3.<br>Y                                                                      | 61   |
|      | 5.2.1       | Tree heights                                                                 | 61   |
|      | 5.2.2       | Tree diameter                                                                | 62   |
|      | 5.2.3       | Measurements taken for volume calculation                                    | 62   |
|      | 5.2.4       | Merchantable volume (V <sub>m</sub> )                                        | 64   |
|      | 5.2.5       | Calculation of total volume (V <sub>t</sub> ) of the main stem               | 64   |
|      | 5.2.6       | Merchantable volume per hectare                                              | 64   |
|      | 5.2.7       | Total volume of the main stem per hectare                                    | 65   |
| 5.3  | Results     |                                                                              | 66   |
|      | 5.3.1       | Effect of the planting density and clone on tree height                      | 66   |
|      |             | i. Total tree height                                                         | 66   |
|      |             | ii. Crown height                                                             | 67   |
|      | 5.3.2       | Effect of the planting density and clone on the diameter<br>at breast height | • 67 |
|      | 5.3.3       | Assessments of the tree volume                                               | 69   |
|      |             | i. Merchantable volume per tree and per hectare                              | 69   |
|      |             | ii. Total stem volume per tree and per hectare                               | 71   |
|      | 5.3.4 Thick | kness of the bark under different densities and clones                       | 71   |
| 5.4  | Discussion  |                                                                              | 74   |

| CHA | PTER 6 | : EFFECT ON PLANTING DENSITY OF<br>RUBBER ON LATEX PRODUCTION | 80  |
|-----|--------|---------------------------------------------------------------|-----|
| 6.1 | Introd | luction                                                       | 80  |
| 6.2 | Metho  | odology                                                       | 82  |
|     | 6.2.1  | Yield assessments                                             | 82  |
|     | 6.2.2  | Assessment of the incidence of tapping panel dryness          | 84  |
|     | 6.2.3  | Time taken for tapping under different planting densities     | 85  |
|     |        | i. General assumptions and procedure of tapping               | 85  |
|     |        | ii. Assessment on tapping and collecting speed                | 85  |
|     |        | with respect to the planting density                          |     |
|     |        | iii. Assessment on effect of the planting density             | 87  |
|     |        | on tapping and collecting of desired tapping task             |     |
| 6.3 | Resul  | ts                                                            | 89  |
|     | 6.3.1  | Yield assessment                                              | 89  |
|     |        | i. Latex volume                                               | 89  |
|     |        | ii. Dry rubber content                                        | 89  |
|     |        | iii. Yield per tree per tapping                               | 90  |
|     |        | iv. Effect of the planting density on trees in tapping        | 93  |
|     |        | v. Yield per hectare per year                                 | 95  |
|     | 6.3.2  | Incidence of tapping panel dryness                            | 98  |
|     |        |                                                               |     |
|     | 6.3.3  | Time taken for tapping and collecting of latex                | 101 |
| 6.4 | Discu  | ssion                                                         | 103 |

| CHA                                     | PTER 7: GENERAL DISCUSSION                                                                            | 110 |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------|-----|
| 7.1                                     | Growth of rubber with change in planting density<br>and its impact on the latex and timber production | 110 |
| 7.2                                     | Agronomic and socio-economic factors connected with planting density                                  | 117 |
| 7.3                                     | Financial appraisal on high density rubber cultivation                                                | 119 |
| 7.4 Conclusions and the recommendations |                                                                                                       | 122 |
|                                         |                                                                                                       |     |
| REF                                     | ERENCES                                                                                               | 124 |
|                                         |                                                                                                       |     |
| APP                                     | ENDIX                                                                                                 | 137 |
| Appendix 3.1                            |                                                                                                       | 137 |
| Appendix 3.2                            |                                                                                                       | 137 |
| Appendix 3.3                            |                                                                                                       | 138 |
| App                                     | endix 3.4                                                                                             | 138 |
|                                         |                                                                                                       | 139 |
|                                         |                                                                                                       | 140 |
| Арр                                     | endix 3.7                                                                                             | 141 |
| Арр                                     | endix 3.8                                                                                             | 141 |
| App                                     | endix 3.9                                                                                             | 142 |

vi

### LIST OF TABLES

| Table 3.1: | Spatial arrangement of planting densities                         | 30  |
|------------|-------------------------------------------------------------------|-----|
| Table 3.2: | Manuring schedule of the experiment                               | 31  |
| Table 4.1: | Details of the curves fitted to girth expansion of rubber         | 44  |
|            | during 12 years (Fig. 4.2) in each density & clone.               |     |
| Table 4.2: | Differences of the percentages of vacant trees among              | 49  |
|            | four planting densities and clones tested at 7, 9 and 12 YAP.     |     |
| Table 5.1: | Probability levels given by the statistical analysis of different | 66  |
|            | timber measurements with density and clone                        |     |
| Table 6.1: | The actual intensity of tapping (AI) of the rubber trees          | 83  |
|            | tapped during the period of study                                 |     |
| Table 6.2: | Incidence of tapping panel dryness in different planting          | 100 |
|            | densities and clones in year 2003 and 2004                        |     |
| Table 6.3: | Time spent for different activities in tapping & collection       | 102 |
|            | process in four planting densities at 12 YAP                      |     |
| Table 6.4: | Time spent for different activities in tapping & collection       | 102 |
|            | process in three clones at 12 YAP                                 |     |
| Table 7.1: | Summary of the financial analyses made for two most important     | 121 |
|            | clones of rubber under different planting densities.              |     |

### LIST OF FIGURES

|             |                                                                    | Page |
|-------------|--------------------------------------------------------------------|------|
| Figure 4.1: | Schematic diagram showing the sampling plot                        | 42   |
|             | used for leaf area measurements                                    |      |
| Figure 4.2: | Effects of different planting densities on girth                   | 45   |
|             | expansion of rubber                                                |      |
| Figure 4.3: | Thickness of the untapped bark among different                     | 47   |
|             | planting densities in clone (a) RRIC 100 (b) RRIC 110              |      |
|             | and (c) RRIC 121                                                   |      |
| Figure 4.4: | Regression analysis of the relationship between thicknesses        | 48   |
|             | of the untapped bark among different planting densities.           |      |
| Figure 4.5: | Distribution of the tappable trees (TG) and the under girth trees  | 50   |
|             | among four planting densities and clones                           |      |
| Figure 4.6: | Mean leaf area in cm <sup>2</sup> and leaf area index of different | 52   |
|             | planting densities and clones.                                     |      |
| Figure 5.1: | Method of collecting the data for the calculation of stem volume   | 63   |
| Figure 5.2: | The variation of total tree height (m) with different planting     | 67   |
|             | densities and clones at 11 years after planting                    |      |
| Figure 5.3: | The variation of crown height (m) with different planting          | 68   |
|             | densities and clones at 11 years after planting                    |      |
| Figure 5.4: | The differences of the tree diameter at breast height with         | 68   |
|             | different planting densities and clones at 11 years after planting |      |
| Figure 5.5: | Merchantable timber volume per tree in different planting          | 70   |
|             | densities and clones at 11 years after planting.                   |      |

| Figure 5.6: | Merchantable timber volume per hectare in different planting                           | 70 |
|-------------|----------------------------------------------------------------------------------------|----|
|             | densities and clones at 11 years after planting                                        |    |
| Figure 5.7: | Total stem volume per tree (m <sup>3</sup> tree <sup>-1</sup> ) in different planting  | 72 |
|             | densities and clones at 11 years after planting                                        |    |
| Figure 5.8: | Total stem volume per hectare (m <sup>3</sup> ha. <sup>1</sup> ) in different planting | 72 |
|             | densities and clones at 11 years after planting                                        |    |
| Figure 5.9: | Thickness of the untapped bark (mm) in different planting                              | 73 |
|             | densities and clones at 11 years after planting                                        |    |
| Figure 6.1: | Latex volume per tree of different planting densities in                               | 91 |
|             | clone (a) RRIC 100 (b) RRIC 110 and (c) RRIC 121                                       |    |
| Figure 6.2: | Dry rubber content of different planting densities in                                  | 92 |
|             | clone (a) RRIC 100 (b) RRIC 110 and (c) RRIC 121                                       |    |
| Figure 6.3: | Yield per tree per tapping of different planting densities in                          | 94 |
|             | clone (a) RRIC 100 (b) RRIC 110 and (c) RRIC 121                                       |    |
| Figure 6.4: | Regression analysis of the relationship between yield per tree                         | 95 |
|             | per tapping with planting density and three clones                                     |    |
| Figure 6.5: | Variation of the (a) % tappability and (b) tappable trees per                          | 96 |
|             | hectare in different planting densities and clones at 7 YAP                            |    |
| Figure 6.6: | Variation of trees in tapping of different planting                                    | 97 |
|             | densities and clones from 8 – 12 YAP                                                   |    |
| Figure 6.7: | Regression analysis between trees in tapping per hectare                               | 98 |
|             | and planting density with three clones tested at 12 YAP                                |    |
| Figure 6.8: | Estimated yield per hectare per year (YPH) of different                                | 99 |
|             | planting densities and clones.                                                         |    |

### LIST OF PLATES

#### Page

28

Plate 3.1: Map of the rubber growing areas of Sri Lanka

and the experimental site

## LIST OF ABBREVIATIONS

| AI             | Actual tapping intensity              |
|----------------|---------------------------------------|
| BT             | Bark thickness                        |
| BCR            | Benefit – cost ratio                  |
| B45            | Girth below 45                        |
| СОР            | Cost of production                    |
| ct             | Collecting time within tree           |
| cť'            | Walking time per tree when collecting |
| СТВ            | Collecting time per task              |
| ct + ct'       | total collecting time per tree        |
| D              | Total walking distance of the plot    |
| d/2            | Once in two days                      |
| d/3            | Once in three days                    |
| % d            | Percentage of the actual density      |
| d <sub>b</sub> | Bottom diameter                       |
| d <sub>m</sub> | Mid diameter                          |
| Dp             | Days in period concerned              |
| dt             | Top diameter                          |
| DIS            | Average walking distance of the plot  |
| DRC            | % Dry rubber content                  |
| g/t/t          | Grams per tree per tapping            |
| IRR            | Internal rate of return               |
| L              | Length of the section of tree         |
| LA             | Land area                             |

| LAI                                                         | Leaf area index                                                                                                                                                                                                 |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Le                                                          | Length of cut                                                                                                                                                                                                   |
| LPH                                                         | Labour amount per hectare                                                                                                                                                                                       |
| LSD                                                         | Least significant different                                                                                                                                                                                     |
| MLA                                                         | Mean leaf area                                                                                                                                                                                                  |
| Ν                                                           | Number of trees in relevant planting density                                                                                                                                                                    |
| NPV                                                         | Net present value                                                                                                                                                                                               |
| $\mathbf{N}_{\mathbf{t}}$                                   | Number of tappings                                                                                                                                                                                              |
| NTL                                                         | Number of total leaves                                                                                                                                                                                          |
| PBP                                                         | Pay back period                                                                                                                                                                                                 |
| PD                                                          | Partially dried trees                                                                                                                                                                                           |
| RRISL                                                       | Rubber Research Institute of Sri Lanka                                                                                                                                                                          |
| ½ S                                                         | Half spiral cut                                                                                                                                                                                                 |
|                                                             |                                                                                                                                                                                                                 |
| t                                                           | Tapping time per tree                                                                                                                                                                                           |
| t<br>ť                                                      | Tapping time per tree<br>Walking time per tree                                                                                                                                                                  |
|                                                             |                                                                                                                                                                                                                 |
| ť                                                           | Walking time per tree                                                                                                                                                                                           |
| ť'<br>T                                                     | Walking time per tree<br>Time taken to tap a sampling plot                                                                                                                                                      |
| ť<br>T<br>TB                                                | Walking time per tree<br>Time taken to tap a sampling plot<br>Total tapping time per task                                                                                                                       |
| ť<br>T<br>TB<br>TD                                          | Walking time per tree<br>Time taken to tap a sampling plot<br>Total tapping time per task<br>Totally dried trees                                                                                                |
| ť<br>T<br>TB<br>TD<br>TG                                    | Walking time per tree<br>Time taken to tap a sampling plot<br>Total tapping time per task<br>Totally dried trees<br>Tappable girth                                                                              |
| ť<br>T<br>TB<br>TD<br>TG<br>TIT                             | Walking time per tree<br>Time taken to tap a sampling plot<br>Total tapping time per task<br>Totally dried trees<br>Tappable girth<br>Trees in tapping                                                          |
| t'<br>T<br>TB<br>TD<br>TG<br>TIT<br>TIT <sub>ha</sub>       | Walking time per tree<br>Time taken to tap a sampling plot<br>Total tapping time per task<br>Totally dried trees<br>Tappable girth<br>Trees in tapping<br>Trees in tapping per hectare                          |
| ť<br>T<br>TB<br>TD<br>TG<br>TIT<br>TIT <sub>ha</sub><br>TPD | Walking time per tree<br>Time taken to tap a sampling plot<br>Total tapping time per task<br>Totally dried trees<br>Tappable girth<br>Trees in tapping<br>Trees in tapping per hectare<br>Tapping panel dryness |

| V <sub>int</sub> | Volume between the cone and minimal diameter point |
|------------------|----------------------------------------------------|
| $V_L$            | Volume of latex                                    |
| V <sub>m</sub>   | Merchantable volume per hectare                    |
| v <sub>m</sub>   | Merchantable volume per tree                       |
| Vs               | Timber volume of any section                       |
| Vt               | Stem volume per tree                               |
| V <sub>t</sub>   | Total volume per hectare                           |
| YAP              | Years after planting                               |
| ҮРН              | Yield per hectare                                  |

#### ACKNOWLEDGEMENT

I owe a sense of gratitude to Dr. S.M.C.U.P. Subasinghe and Dr. V.H.L. Rodrigo my supervisors for their guidance, encouragement and constructive criticism extended throughout the study. Dr. (Mrs.) U.A.D.P. Gunawardene, deserves special thanks for arranging viva-voce and the guidance given in absence of my internal supervisor who was on sabbatical leave during the evaluation phase of the thesis. I am indebted to Dr. (Mrs.) P. Seneviratne, Head, Plant Science Department for making necessary arrangements to enable me to carryout this project. My sincere gratitude should go to Dr. Hiran Amarasekara, Head, Department of the Forestry and Environmental Science, University of Sri Jayewardenepura for his extensive support.

I am very much grateful to Dr. L.M.K. Tillekeratne, former Director, RRISL for allowing me to carryout this study. It is pleasure to thank Dr. A. Nugawela, Director, RRISL for his interest to initiate this trial, guidance and financial support given for the success this project. The valuable advices and support given by Dr. C.K. Jayasinghe, Deputy Director Research (Biology), RRISL in connection with the control of diseases in experimental site are greatly appreciated.

I wish to express my sincere thanks to Krishan, Dharmasiri, Vidura, Vishani, Sarojani, Lakshika and Jayoma of the RRISL for their assistance in the field and laboratory work. I also wish to forward my special thanks to Mr. R. Samarasekara and all the staff in the Kuruwita sub-station of RRISL, for their support in field upkeep and data collection. The assistance given by Dr. (Mrs.) W. Wijesuriya and her staff in statistical analysis is gratefully acknowledged. Thanks also go to Mr. S.U. Amarasinghe, Mrs. R. Amaratunge and other staff of the library.

Thanks are also due to the entire staff of the Plant Science Department, RRISL for their supports given throughout the study. I extend my appreciation to Mrs. D.E. Jayawardena who helped me in typing the manuscript. Finally, I am very grateful to my family members for their moral support and encouragements.

#### ABSTRACT

As for any crop, planting density of rubber (*Hevea brasiliensis*) appeared to be a primary factor which determines the ultimate yield and profitability. Previous studies have shown that the optimum density of planting rubber depend on the genotype, the purpose of planting and socio economic factors. Therefore, the present study was conducted with the objective of identifying the suitable planting densities of rubber with respect to both latex and timber production for major genotypes planted in Sri Lanka.

The experiment was set up in Ratnapura district of Sri Lanka in 1992. Three genotypes (clones), i.e. RRIC 100, RRIC 110 and RRIC 121 were planted in three high densities, i.e. 600, 700, 800 trees per hectare, with the presently recommended level of 500 trees per hectare. The statistical design of split plots was used where the planting densities were laid as the main plots whilst the clones were in sub plots. Growth and yield parameters of rubber in terms of girth, bark thickness, the incidences of tapping panel dryness, latex volume, % dry rubber content, number of trees in tapping were assessed throughout the study. In addition, the leaf area index, volume of timber and time taken for different activities of tapping operation were assessed in 10<sup>th</sup>, 11<sup>th</sup> and 12<sup>th</sup> year after planting, respectively. A financial analysis was also performed with the data gathered for 14 years and extrapolated values up to the 30<sup>th</sup> year.

Increasing planting density over presently recommended level, i.e., 500 trees per hectare resulted in reduction in the plant growth, hence low percentage of tappable trees. Nevertheless, the high planting densities led to greater number of tappable trees per hectare. With reduced growth, latex yield per tree was less in high densities. However,

there was an increase in yield per hectare with the increase in the planting density due to the corresponding increase in number of tappable trees. Reduction in tree growth reduced the timber value of the rubber tree in high densities, however high level of income from rubber trees could be expected at the end of the life cycle due to the increase in number of trees per hectare in high densities.

The percentage of trees affected by tapping panel dryness was not significantly affected by the planting density. There was no possibility to increase the tapping task within the generally used time frame in high planting densities because the average distance (DIS) between two productive trees in all densities was comparable due to lower percentage of trees in tapping in higher densities.

Irrespective of the density, the clone RRIC 121 outperformed the two other clones (i.e. RRIC 100 and RRIC110) tested with respect to growth hence timber production and latex yield. The poor performance of RRIC 110 was particularly due to the infection of *Corynespora* leaf fall disease.

Based on the financial assessments in terms of NPV, BCR and IRR, the planting density of RRIC 100 could be increased up to 600 trees per hectare whilst investment on higher densities above 500 trees per hectare in the clone RRIC 121 was not worthwhile. In order to derive suitable planting densities under sub optimal conditions and at different management conditions, adaptive research trials are to be carried out in those conditions and social factors influencing the parameters of financial analyses are to be taken into consideration.