EMERGING RISK FACTORS AND OUTCOME PREDICTORS OF CORONARY ARTERY DISEASE IN A SRI LANKAN POPULATION

BY

PORUTHOTAGE PRADEEP RASIKA PERERA

Ph. D. 2009
EMERGING RISK FACTORS AND OUTCOME PREDICTORS OF CORONARY ARTERY DISEASE IN A SRI LANKAN POPULATION

BY

PORUTHOTAGE PRADEEP RASIKA PERERA

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Doctor of Philosophy in Biochemistry on 30th January 2009.
DECLARATION BY THE CANDIDATE

The work in this thesis was carried out by me under the supervision of Professor Hemantha Peiris (Head of the Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura), Professor Lal Chandrasena (Professor of Biochemistry, Department of Biochemistry, Faculty of Medicine, University of Kelaniya) and Dr. J. Indrakumar (Senior Lecturer, Department of Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura) and a report on this has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

Poruthotage Pradeep Rasika Perera

30.01.2009

Date
DECLARATION BY THE SUPERVISORS

We certify that the above statement by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Professor Hemantha Peiris
(Supervisor)

Professor L. G. Chandrasena
(Supervisor)

Dr. J. Indrakumar
(Supervisor)

Date: 30th January 2009
I dedicate this thesis to
my parents, my wife Chandana
and my daughters
Pavithri, Kaveetha and Dilini.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xviii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xix</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>xxii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xxv</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 General Introduction

01

1.2 Cardiovascular risk factors

1.2.1 Non-modifiable risk factors

1.2.1.1 Age

02

1.2.1.2 Gender

02

1.2.1.3 Heredity / family history

03

1.2.1.4 Ethnicity

03

1.2.2 Modifiable risk factors

1.2.2.1 Hypertension

04

1
1.2.2.2 Hypercholesterolaemia and hyperlipidemia

i. Elevated total cholesterol

ii. Elevated Low-Density Lipoprotein cholesterol (LDL-cholesterol)

iii. Low High Density lipoprotein Cholesterol (HDL-cholesterol)

1.2.2.3 Effect of tobacco smoking

1.2.2.4 Overweight and obesity

1.2.2.5 Diabetes mellitus

1.2.2.6 Effect of alcohol

1.2.2.7 Infrequent exercise/ Physical inactivity

1.3 Traditional vs. Novel coronary risk factors

1.4 Justification

1.5 Objectives

1.5.1 General Objectives

1.5.2 Specific Objectives

2. LITERATURE REVIEW

2.1 Homocysteine and CAD

2.1.1 Homocysteine metabolism

2.1.2 Homocysteine in plasma/Serum
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.3 Factors affecting plasma (serum) homocysteine levels</td>
<td>24</td>
</tr>
<tr>
<td>2.1.3.1 Metabolic derangements affecting plasma (serum) homocysteine</td>
<td>24</td>
</tr>
<tr>
<td>levels</td>
<td></td>
</tr>
<tr>
<td>2.1.3.2 Genetic mutations affecting plasma (serum) homocysteine levels</td>
<td>28</td>
</tr>
<tr>
<td>2.1.3.3 Vitamin deficiencies affecting plasma (serum) homocysteine</td>
<td>29</td>
</tr>
<tr>
<td>levels</td>
<td></td>
</tr>
<tr>
<td>2.1.4 Other contributory factors affecting homocysteine levels</td>
<td>30</td>
</tr>
<tr>
<td>2.1.5 Homocysteine and its association with coronary artery disease</td>
<td>31</td>
</tr>
<tr>
<td>2.1.5.1 Homocysteine as a risk factor for CAD</td>
<td>31</td>
</tr>
<tr>
<td>2.1.5.2 Mechanisms responsible for atherosclerosis and CAD in</td>
<td>35</td>
</tr>
<tr>
<td>hyperhomocysteinaemia</td>
<td></td>
</tr>
<tr>
<td>2.2 Apolipoproteins and CAD</td>
<td>39</td>
</tr>
<tr>
<td>2.2.1 Apolipoprotein A and apolipoprotein B</td>
<td>39</td>
</tr>
<tr>
<td>2.2.2 Apolipoprotein A-I and apolipoprotein B in atherosclerosis and CAD</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2.1 Lipids and their role in atherosclerosis</td>
<td>41</td>
</tr>
<tr>
<td>2.2.2.2 Assessment of lipid related risk of cardiovascular disease</td>
<td>44</td>
</tr>
<tr>
<td>2.2.2.3 Apolipoprotein A-I and apolipoprotein B in the assessment of</td>
<td>46</td>
</tr>
<tr>
<td>risk of cardiovascular disease</td>
<td></td>
</tr>
<tr>
<td>2.3 Glutathione peroxidase and CAD</td>
<td>53</td>
</tr>
<tr>
<td>2.3.1 Glutathione peroxidase</td>
<td>53</td>
</tr>
</tbody>
</table>
2.3.2 Glutathione peroxidase in atherosclerosis and CAD

2.4 Assessment of severity of coronary ischaemia

3. MATERIALS AND METHODS

3.1 Chemicals and reagents

3.1.1 Water

3.1.2 Chemicals

3.1.3 Special chemicals/Reagents

3.2 Methods

3.2.1 Selection of study subjects

3.2.1.1 Selection of study subjects for study 1 - Association of
Hyperhomocysteinaemia with coronary artery disease
in a Sri Lankan population.

i. Cases

ii. Controls

3.2.2 Selection of study subjects for study 2 - Association of
Homocysteine, Vitamin B_{12}, Folate, Apolipoprotein A-I,
Apolipoprotein B, and glutathione peroxidase in CABG patients

3.3 Collection of blood samples

3.3.1 Study 1:

3.3.2 Study 2
3.4 Data Collection

3.4.1 Study 1

3.4.2 Study 2:

3.5 Height, weight and Body Mass Index

3.6 Method development and analysis of homocysteine concentration by high performance liquid chromatography in study 1

3.6.1 Preparation and assay of plasma samples for homocysteine:

3.6.2 Apparatus and chromatographic conditions

3.6.3 Chromatogram patterns obtained with different mobile phase methanol concentrations

3.6.4 Comparison of the internal standards

3.6.5 Validation of assay method

3.6.6 Performance characteristics of the Homocysteine assay method

3.6.7 Calculation of homocysteine concentration

3.6.8 Quality control

3.7 Quantitative analysis of Vitamin B_{12}

3.7.1 Vitamin B_{12} assay procedure

3.7.2 Reaction principle

3.7.3 Calibration

3.7.4 Quality control
3.8 Quantitative analysis of folic acid

3.8.1 Folic acid assay procedure

3.8.2 Reaction principle

3.8.3 Calibration

3.8.4 Quality control

3.9 Quantitative analysis of homocysteine in study 2

3.9.1 Homocysteine assay procedure

3.9.2 Biological principle of the procedure

3.9.3 Calibration

3.9.4 Quality control

3.10 Quantitative analysis of apolipoprotein A-I

3.10.1 Apolipoprotein A-I assay procedure

3.10.2 Reaction principle

3.10.3 Calibration

3.10.4 Quality control

3.11 Quantitative analysis of apolipoprotein B

3.11.1 Apolipoprotein B assay

3.11.2 Reaction principle

3.11.3 Calibration

3.11.4 Quality control
3.12 Quantitative analysis of glutathione peroxidase activity

3.12.1 Glutathione peroxidase assay procedure

3.12.2 Reaction principle

3.12.3 Calibration

3.12.4 Quality control

3.13 Genotyping to detect MTHFR C677T and A1298C polymorphisms

3.13.1 Polymerase chain reaction / restriction fragment length polymorphism

3.13.2 DNA extraction

3.13.3 Amplification of DNA segments of interest to detect MTHFR C677T and A1298C polymorphisms

3.13.3.1 Principle of the PCR procedure

3.13.3.2 PCR amplification of DNA for MTHFR C677T polymorphism analysis

i. PCR amplification of genomic DNA segment to analyze MTHFR C677T polymorphism using DMD 48 as internal control

ii. PCR amplification of genomic DNA segment to analyze MTHFR C677T polymorphism and amplification of bacteriophage λ DNA segment to use as internal control.

a). PCR amplification of genomic DNA segment to analyze MTHFR C677T:
b. Preparation of primers to generate 150bp bacteriophage \(\lambda\) fragment

c. PCR amplification of bacteriophage \(\lambda\) DNA segment
to use as an internal control

3.13.3.3 PCR amplification of DNA for MTHFR A1298C polymorphism analysis

3.13.4 Restriction endonuclease digestion of amplified DNA segments to detect MTHFR C677T and A1298C polymorphisms

3.13.4.1 Restriction endonuclease digestion of amplified DNA segments with \(Hinf\ I\) to detect MTHFR C677T polymorphism

i. Restriction endonuclease digestion of amplified DNA segments with \(Hinf\ I\) to detect MTHFR C677T polymorphism using DMD as internal control

ii. Restriction endonuclease digestion of amplified DNA segments with \(Hinf\ I\) to detect MTHFR C677T polymorphism using bacteriophage \(\lambda\) 150bp PCR product as internal control.

3.13.4.2 Restriction endonuclease digestion of amplified DNA segments with \(Mbo\ II\) to detect MTHFR A1298C polymorphism
3.13.5 Visualization of DNA fragments with agarose gel electrophoresis

3.13.5.1 Preparation of the agarose gel

3.13.5.2 Electrophoresis of prepared DNA samples using the prepared agarose gels.

3.13.6 Quality control

3.14 Calculation of severity of ischaemia in study 2

3.14.1 Calculation of vessel score

3.14.2 Calculation of stenosis score

3.14.3 Calculation of extent score

3.15 Data processing and analysis

3.16 Ethical considerations

4. RESULTS

4.1 Study I

4.1.1 Characteristics of study subjects

4.1.2 Association between Hyperhomocysteinaemia and CAD

4.1.3 Association between hyperhomocysteinaemia and CAD in the young and adults over 50 years of age

4.1.4 Association of risk of CAD in persons with two or less traditional risk factors for the development of CAD and with patients with 3 or more traditional risk factors
4.2 Study II

4.2.1 Characteristics of study subjects
 4.2.1.1 General characteristics of the study subjects
 4.2.1.2 Biochemical and anthropometric characteristics of the study population.

4.2.2 Association of vitamin B₁₂ and folate with Homocysteine concentrations in patients with coronary artery Disease.

4.2.3 MTHFR C677T/A1298C polymorphism analysis:
 4.2.3.1 Comparison of the internal controls and results of agarose gel electrophoresis in MTHFR C677T polymorphism analysis
 4.2.3.2 MTHFR A1298C polymorphism analysis using agarose gel electrophoresis

4.2.4 Association between Hyperhomocysteinaemia and MTHFR gene polymorphisms (A1298C, C677T polymorphism):

4.2.5 Severity of coronary artery disease in the study population

4.2.6 Association between vitamin B₁₂, Folate, and Homocysteine concentrations with the severity of coronary artery disease.

4.2.7 Association of Apolipoprotein A-I, Apolipoprotein B and Glutathione peroxidase with the severity of coronary artery disease

4.2.8 Association of age with Apolipoprotein A-I, Apolipoprotein B, glutathione peroxidase concentrations in coronary artery disease patients

x
5. DISCUSSION

5.1 Association between Hyperhomocysteinaemia and CAD

5.1.1 High performance liquid chromatography in the assay of Homocysteine

5.1.2 Association between Hyperhomocysteinaemia and coronary artery disease

5.2 Association between hyperhomocysteinaemia and CAD in the young (age ≤ 50 years) compared to the elderly (age > 50 years).

5.3 Association between Hyperhomocysteinaemia and the number of risk factors (having two or less traditional risk factors compared to 3 or more traditional risk factors) among coronary artery disease patients.

5.4 Deficiency vitamin/s (vitamin B₁₂ and folate) giving rise to hyperhomocysteinaemia in patients with coronary artery disease.

5.5 Association between Hyperhomocysteinaemia and MTHFR gene mutations (A1298C, C677T polymorphism) using restriction fragment length polymorphism analysis

5.5.1 Use of bacteriophage λ DNA as an internal control in restriction enzyme digestion in the MTHFR C677T gene mutation analysis by RFLP agarose gel electrophoresis

5.5.2 Prevalence of MTHFR C677T polymorphism in the study sample

5.5.3 Prevalence of MTHFR A1298C polymorphism in the study sample
5.5.4 Association of MTHFR C677T gene mutations (A1298C, C677T polymorphisms) with homocysteine concentrations in CAD patients in the study sample.

5.6 Association between, vitamin B₁₂, Folate, and Homocysteine levels with the severity of coronary artery disease.

5.7 Association of Apolipoprotein A-I, Apolipoprotein B and Glutathione peroxidase with severity of coronary artery disease.

5.8 Influence of age on the association of apolipoprotein A-I, apolipoprotein B and glutathione peroxidase concentrations with coronary artery disease patients.

6. CONCLUSIONS

7. REFERENCES

8. APPENDICES

Appendix 1: List of Publications and Communications from Thesis
Appendix 2: Questionnaire used in study 1
Appendix 3: Questionnaire/Data sheet used in study 2
Appendix 4: Ethical clearance for study 1
Appendix 5: Ethical clearance for study 2 (excluding genetic analysis)
Appendix 6: Ethical clearance for the genetic analysis in study 2
Appendix 7: Information leaflet used in study 1(English)
Appendix 8: Information leaflet used in study 1(Sinhala)
List of Tables

Table 3.1 Comparison of retention times for homocysteine and internal standard (cystamine dihydrochloride) after 3 months storage at -20 °C. 75

Table 3.2 PCR primers used for the PCR/RFLP genotyping assays to genotype the MTHFR C677T polymorphism and the initial internal control DMD 48. 93

Table 3.3 PCR primers developed for amplification of selected bacteriophage λ 154 bp segment. 96

Table 3.4 PCR primers used for the PCR/RFLP genotyping assays to genotype the MTHFR A1298C polymorphism. 99

Table 4.1 Prevalence characteristics of the subjects in study 1. 111

Table 4.2 Weight, height and BMI of cases and controls in study 1. 112

Table 4.3 Homocysteine concentrations of the subjects in the study. 112

Table 4.4 Correlation between plasma homocysteine concentration and age in the study population. 115

Table 4.5 Conditional logistic regression analysis of confounding variables. 117

Table 4.6 Association between hyperhomocysteinaemia and CAD by age group. 119
Table 4.7 Frequency distribution of number of traditional risk factors in CAD patients and controls
Table 4.8 Association between the number of traditional risk factors and development of CAD.
Table 4.9 Association between homocysteine levels and number of traditional risk factors in CAD patients.
Table 4.10 Personal characteristics of subjects in study 2.
Table 4.11 Biochemical and anthropometric characteristics of subjects in study 2.
Table 4.12 Association of vitamin B_{12} and folate concentrations to Homocysteine concentrations.
Table 4.13 Significance of the association between vitamin B_{12} and folate with normal homocysteine levels and hyperhomocysteinaemia at different cut off values.
Table 4.14 Genotype frequencies for MTHFR A1298C and C677T polymorphisms of the study sample (n=79).
Table 4.15 Relationship between MTHFR C677T genotype and homocysteine, folate and vitamin B_{12} concentrations.
Table 4.16 Relationship between A1298C genotype and homocysteine, folate and vitamin B_{12} concentrations.
Table 4.17 Relationship between MTHFR A1298C /C677T genotype combinations and homocysteine concentrations.

Table 4.18 Severity of ischaemia in the study sample.

Table 4.19 Association of vitamin B$_{12}$, Folate, and Homocysteine concentrations to severity of CAD.

Table 4.20 Association of apolipoprotein A-I, apolipoprotein B and glutathione peroxidase to severity of CAD.

Table 4.21 Influence of age on the association of apolipoprotein A-I, apolipoprotein B, glutathione peroxidase on coronary artery disease.
LIST OF FIGURES

Figure 2.1 Schematic diagram of the Homocysteine metabolic pathway in humans. 20
Figure 2.2 Structure of Homocysteine and its oxidized forms in plasma. 23
Figure 3.1 Chromatogram of a representative plasma sample measured at a methanol concentration of 30 ml/L. 71
Figure 3.2 Chromatogram of a representative plasma sample measured at a methanol concentration of 12 ml/L. 71
Figure 3.3 Chromatogram of Homocysteine standard (70 μmol/L) and Internal standard Mercapto-propionyl-glycine (200 μmol/L). 73
Figure 3.4 Chromatogram of Homocysteine standard (70 μmol/L) and internal standard Cystamine dihydrochloride (200 μmol/L). 73
Figure 3.5 Homocysteine standard curve. 75
Figure 4.1 Distribution of serum homocysteine with age in normal subjects of study 1. 114
Figure 4.2 Distribution of serum homocysteine with age in CAD patients of study 1. 114
Figure 4.3 Distribution of serum homocysteine with age in CAD patients of study 2. 128
Plate 4.1 MTHFR 677C>T genotyping: The pattern created by electrophoresing the Hinf I digested PCR products of samples of the three genotypes and the DMD 48 internal control on a 2% agarose gel.

Plate 4.2 MTHFR 677C>T genotyping: The pattern created by electrophoresing the Hinf I digested PCR products of samples of the three genotypes and the 150bp bacteriophage λ DNA internal control on a 2% agarose gel.

Plate 4.3 MTHFR A1298C genotyping: The pattern created by electrophoresing the Mbo II digested PCR products of samples of the three genotypes on a 2% agarose gel.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apo-A</td>
<td>Apolipoprotein A</td>
</tr>
<tr>
<td>Apo B</td>
<td>Apolipoprotein B</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>CABG</td>
<td>Coronary artery bypasses grafting</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary Heart Disease</td>
</tr>
<tr>
<td>CPK</td>
<td>Creatine phospho kinase</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>CVD</td>
<td>Coronary Vascular Disease</td>
</tr>
<tr>
<td>dATP</td>
<td>deoxy Adenosine Triphosphate</td>
</tr>
<tr>
<td>dCTP</td>
<td>deoxy Cytosine Triphosphate</td>
</tr>
<tr>
<td>dGTP</td>
<td>deoxy Guanosine Triphosphate</td>
</tr>
<tr>
<td>DMD</td>
<td>Duchene's Muscular Dystrophy</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxy ribonucleic acid</td>
</tr>
<tr>
<td>dTTP</td>
<td>deoxy Thymidine Triphosphate</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FPIA</td>
<td>Fluorescence Polarization Immunoassay</td>
</tr>
<tr>
<td>GNMT</td>
<td>Glycine N-methyltransferase</td>
</tr>
<tr>
<td>GPX</td>
<td>Glutathione Peroxidase 1</td>
</tr>
<tr>
<td>Hb</td>
<td>Haemoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>High-density lipoprotein cholesterol</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>ICD</td>
<td>International Classification of Diseases</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IDL</td>
<td>Intermediate-density lipoprotein</td>
</tr>
<tr>
<td>IHD</td>
<td>Ischaemic Heart Disease</td>
</tr>
<tr>
<td>LCAT</td>
<td>Lecithin cholesterol acyl transferase</td>
</tr>
<tr>
<td>LDL</td>
<td>Low-density lipoprotein</td>
</tr>
<tr>
<td>Lp(a)</td>
<td>Lipoprotein (a)</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>MTHFR</td>
<td>Methylenetetrahydrofolate reductase</td>
</tr>
<tr>
<td>n</td>
<td>Number</td>
</tr>
<tr>
<td>NEB</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>PAR</td>
<td>Population attributable risks</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PLP</td>
<td>Pyridoxal-5'-phosphate</td>
</tr>
<tr>
<td>RBC</td>
<td>Red blood cell</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>RNAse</td>
<td>Ribonuclease</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>Reversed phase HPLC</td>
</tr>
<tr>
<td>RV</td>
<td>Reaction vessel</td>
</tr>
<tr>
<td>SAH</td>
<td>S-adenosylhomocysteine</td>
</tr>
<tr>
<td>SAM</td>
<td>S-adenosyl methionine</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>sd LDL</td>
<td>Small dense LDL</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris acetate EDTA</td>
</tr>
<tr>
<td>TBP</td>
<td>Tri-butyl phosphine</td>
</tr>
<tr>
<td>TC</td>
<td>Total cholesterol</td>
</tr>
<tr>
<td>TCEP</td>
<td>Tris(2-carboxyethyl)phosphine</td>
</tr>
<tr>
<td>TG</td>
<td>Triglyceride</td>
</tr>
<tr>
<td>SBD-F</td>
<td>7-Fluorobenzofurazan-4-sulfonic acid Ammonium salt</td>
</tr>
<tr>
<td>U.K.</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
<tr>
<td>VLDL-C</td>
<td>Very Low-density lipoprotein cholesterol</td>
</tr>
<tr>
<td>WHO</td>
<td>World Heath Organization</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENT

I wish to thank all those who contributed in different ways to the work involved in this thesis.

In particular, I would like to express my heartfelt gratitude to:-

My supervisor, Professor Hemantha Peiris (Head, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) for many individual acts of kindness, guidance, support and encouragement, too numerous to mention here, given to me throughout the research project as well as in preparation of this manuscript. This work would not have been feasible without his help.

My supervisor, Prof. L. G. Chandrasena (Professor of Biochemistry, Faculty of Medicine, University of Kelaniya) for his invaluable guidance throughout the research project and in preparation of this manuscript and especially for granting permission to carry out the second part of my study at Nawaloka Hospitals PLC, Colombo 2, Sri Lanka.

My supervisor, Dr. J. Indrakumar, (Senior Lecturer, Department of Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura) for his invaluable guidance and encouragement throughout the research project as well as in preparation of this manuscript.

Prof. Rajitha Wickremasinghe (Dean, Faculty of Medicine, University of Kelaniya) for the invaluable guidance extended to me regarding statistics during the course of this study as well as helping me in the statistical analysis of this project.

Dr. Upeksha Samaraweeraarachchi for the help extended to me in recruitment of subjects and collection of blood samples from Colombo South Teaching Hospital, Kalubowila in study 1.
Dr. Hemant D. Waikar, Consultant Cardiothoracic Anesthetist, Nawaloka Hospitals (Pvt.) Ltd, Colombo for help extended to me in recruitment of subjects, filling the questionnaire and help in getting the coronary angiography readings in study 2.

Nawaloka Hospitals PLC Colombo and Nawaloka Metropolis Laboratories for giving me the opportunity to utilize the facilities available at the pathology laboratory and Mr. Anton Fernando and the staff of the pathology laboratory for training me in the operation of laboratory instruments.

Consultant Cardiothoracic Surgeons of Nawaloka Hospitals PLC for assistance given in reading the angiograms.

Dr. Neil Fernandopulle the Head of GENETECH Private Ltd. Colombo 8, for his excellent supervision and training given to me in carrying out the genetic analyses and especially for giving me the opportunity to utilize the facilities available at their institution.

Dr. Shamini Prathapan, (Lecturer, Dept. of Community Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura) for helping me with some of the statistical analyses in the second part of this study.

All subjects for volunteering to take part in this study, without whom this study would have been impossible.

My colleagues at the Department of Biochemistry for their support and encouragement as well as in providing their technical knowhow at times of need.

University of Sri Jayewardenepura for research grants ASP/6/R/2002/1, ASP/6/R/2005/12 and ASP/6/2007/4 and the National Science Foundation for the scholarship NSF/SCH/2007/1 which helped me in covering part of the cost of the study.
My parents and my wife for the support and encouragement extended to me throughout the study and my daughters for their tolerance, patience and for providing the much needed relaxation during difficult times.
Emerging risk factors and outcome predictors of coronary artery disease (CAD) in a Sri Lankan population

PORUTHOTAGE PRADEEP RASIKA PERERA

ABSTRACT

Introduction: Coronary Artery Disease (CAD) is the number one killer disease in Sri Lanka. Apart from the conventional risk factors for CAD, a few new risk factors have been identified. Of these fasting hyperhomocysteinaemia (HHcy), elevated apolipoprotein B, decreased apolipoprotein A-I and the deficiency of the cardiovascular associated antioxidant Glutathione Peroxidase (GPx) have been reported to be significantly associated with CAD.

Objectives: This study was designed to determine a). the association between HHcy and CAD and whether this association was age dependent; b). the likely causes of variations in homocystein levels [mainly changes in serum vitamin B₁₂ and folate status, and methylenetetrahydrofolate reductase (MTHFR) A1298C and C677T gene polymorphisms], and c). the association of novel risk factors such as folate, vitamin B₁₂, apolipoprotein A-I, apolipoprotein B, GPx and HHcy in relation to severity of Coronary Artery Disease (CAD).

Methods: A case control study was conducted using 221 subjects with diagnosed acute coronary syndromes and 221 age and sex matched controls to assess the association between HHcy and CAD. The associations between severity of CAD and the other risk factors and folate and vitamin B₁₂ with homocysteine were also assessed in 79 subjects with diagnosed CAD.

Results: Results revealed that there was a significant association (p = 0.002) between HHcy and CAD. Furthermore, a significant association (p=0.02) was observed between HHcy and CAD.
HHcy and CAD in young patients but not in subjects over 50 years of age. HHcy was found to be a significant predictor of CAD after controlling for hypertension and hypercholesterolaemia (adjusted odds ratio 2.411). The vitamin B₁₂ and folate levels showed a significantly (p < 0.01) negative correlation with serum homocysteine concentrations. There was no significant association (p>0.05) between MTHFR C677T and A1298C polymorphisms and homocysteine levels.

Serum homocysteine and folate levels were not significantly related to the severity of coronary artery disease. However, the serum vitamin B₁₂ concentrations showed a significant negative correlation with severity of ischaemia when assessed by the vessel score (p <0.05) and the extent score (p < 0.01). Apolipoprotein A-1 (inversely) and apolipoprotein B/A-1 ratio showed a significant correlation (p<0.01) with the stenosis and extent scores but not with the vessel score whilst the apolipoprotein B levels correlated significantly only with the vessel score (p<0.05). GPx showed a significant inverse correlation (p<0.001) with the vessel, the stenosis and the extent scores. This has not been reported in the literature before.

Conclusions: Hyperhomocysteinaemia is an independent risk factor for CAD and its association is more in the young compared to elderly subjects. While MTHFR gene polymorphisms were not associated with homocysteine concentrations, a decrease in serum concentrations of either vitamin B₁₂ or folate was associated with higher homocysteine concentrations. GPx, Apolipoprotein B/A-1 ratio and Apolipoprotein A-1 are better predictors of severity of CAD than apolipoprotein B and homocysteine and they may have a value in assessing the severity of CAD in the future.