Am Inwestiggation Of Reuse ThePhotopolymerPrintingPlateDecvlopongingSolvevent & VWasstePhotopolymer As An Adhesive.

Bm

K. H. R Nishantha Jayarathana

Thiss thesis was submitted in partial fulfillment of the requirements for the Master of Science in Polymer Science and Technology to the Faculty of Graduate Studies of the University of Sri Jayewardenepura, Sri Lanka.

Date of Submission: - 7/2/2006

Ccrinmen1 Gne;iiSty

The work describe in this thesis was carried out by the undersign at K.H.R Nishantha Jayarathna, under the supervision of Dr. Laleen Karunanayake, and a report on this has not been The work describe in this thesis was carried out by the undersign at K.H.R Nishantha Jayarathna, under the supervision of Dr. Laleen Karunanayake, and a report on this has not been submitted to any university for another degree. Also, I certify that this thesis does not include, without acknowledgement, any material previously submitted for a Degree in any university and to best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person except where due reference is made in the text.

K.H.R Nishantha Jayarathna Date: 24-Jan-06

I certify that the above statement made by the candidate is true and that this theses is suitable for submission to the university for the purpose of evaluation

4

Dr. Lafeen Karunanayake (Supervisor 1) Department of Chemistry University of Sri Jayewardenepura Date: 24-Jan-06

CONTENTS	Page No
Contents	Ι
List of Figures	V
List if Tables	VIII
Acknowledgement	01
List of abbreviation	03
Abstract	05

1. Introductions and Literature Review

	1.0 Photopolymer			06	
ļ	1.1 Photopolymer in the Printing Industry			06	
		1.1.1	1.1 Applications		
	1.1.2 Plus point of photopolymer compare with				
			other printing plate	08	
		1.1.3	Environment management of photopolymer		
			flexography palate	08	
ļ	1.2	Туре	of photo polymer plate	09	
		1.2.1	Conventional photopolymer plate	09	
		1.2.2	Solvent washable plates	11	
ĵ	1.3	Histor	cal Perspective 1		
	1.4	Solver	nt of the use the plate making	11	
		1.4.1	Composition of the solvent/ ingredients	12	
		1.4.2	Physical and chemical properties of solvent	12	
		1.4.3	Ecological information	13	
1	1.5 Pł	notopoly	mer plate (solvent washable type)	13	
		1.5.1	The steps from raw plate to press ready plate	14	
		1.5.2	Structure of the photopolymer plate	15	

	1.5.3	plate structure of mono layer plate	16
1.6	Identi	fication of the properties of the solvent washable	
		polymer Plate	17
	1.6.1	Identification of the physical properties of the	
		printing plate materials	17
	1.6.2	Important factors to plate making	17
		1.6.2.1 Colour of plate	17
		1.6.2.2 Cure time (Rate of cure)	18
	1.6.3	Important factors to printing	18
		1.6.3.1 Abrasion resistance	18
		1.6.3.2 Compression set	19
		1.6.3.3 Hardness	19
		1.6.3.4 Resilience	19
		1.6.3.5 Shelf life	20
		1.6.3.6 Solvent Resistance	20
1.7	Photo	polymerization	21
	1.7.1	Photo initiator	22
	1.7.2	Inter molecular bond cleavage	24
	1.7.3	Inter Molecular H-abstraction	25
1.8	Polycl	nloroprene (Neoprene)	27
	1.8.1	Adhesive type Neoprene	28
	1.8.2	The distinguish characteristic of the adhesive	
		Neoprene	29
	1.8.3	Resin use in the Neoprene adhesive	30
	1.8.4	Solvent use in the Neoprene adhesive	31
	1.8.5	Metal Oxide use in the Neoprene adhesive	32
1.9	Acryla	ate rubbers	33

2. Materials and methods

2.1	Materials			35
2.2	Instruments			36
2.3	Methods			38
	2.3.1	Identifi	cation of polymer in the photo polymer	
		printing	g plate	38
	2	.3.1.1.1	Identification of polymer present in the	
			un-polymerized photopolymer	38
	2	.3.1.1.2	Identification of polymer present	
			un-polymerized photo polymer solid state	39
	2.3.2	Recycli	ng of printing plate developing solvent	39
		2.3.2.1	Procedure of laboratory distillation	
			plate developing solvent	39
	2.3.3	Prepara	tion of an adhesive using waste flexo plate	
		materia	ls	40
	2.3.4	Determ	ination of peel strength of adhesive	42

3. Results and Discussion

3.1	Result of recycling printing plate developing solvent		
	3.1.1	Increase the efficiency of distillation plant using	
		vacuum generator	44
3.2	Analy	sis of the polymer consist of Photo polymer	60
	3.2.1	Base layer	65
	3.2.2	Polymeric materials	65
3.3	Analysis the adhesive strength 7		73

3.3.1		Fine-tune an adhesive formula by changing	
		the materials	78
	3.3.2	Changed the polymeric raw materials	78
3.4	Concl	usions	84
3.5	Suggestions for future work		

References

List of Figures

Fig: 1.01	Photo Polymer Plate use in the printing industry	07
Fig: 1.02	Photo polymer used in Beverage packaging	08
Fig: 1.03	structure of the monolayer plate	16
Fig: 1.04	Example of Inter molecular bond cleavages	24
Fig: 1.05	Inter Molecular H-abstraction reactions	26
Fig: 1.06	Photo initiator absorb UV light become active radical	26
Fig: 1.07	Cis Trans structures of neoprene	27
Fig 1.08	General structure of tackifying resin	31
Fig 1.09:	Mechanism metal Oxide in Polychloroprene	
	adhesive formulation	33
Fig 2.01:	Design of the test specimen (direction of stress)	
	ASTM D 1876 61T	37
Fig: 3.01	IR spectrum 1 of the un-polymerized photo	
	polymer material (Liquid sample)	46
Fig: 3.02	IR spectrum 2 of the un-polymerized photo polymer	
	material (Liquid sample)	47
Fig: 3.03	FT-IR spectrum 1 of the un-polymerized photo	
	polymer material (Liquid sample)	48
Fig: 3.04	FT-IR spectrum 2 of the un-polymerized photo	
	polymer material (Liquid sample)	49
Fig: 3.05	IR spectrum 1 of the polymerized photo polymer	
	material (thin trance sectional layer)	50
Fig: 3.06	IR spectrum 1 of the polymerized photo polymer	
	material (thin trance sectional layer)	51
Fig: 3.07	FTIR spectrum 1 of the polymerized photo polymer	
	material (outer layer of the polymer)	52
Fig: 3.08	FTIR spectrum 2 of the polymerized photo polymer	

	material (outer layer of the polymer)	53
Fig: 3.09	FTIR spectrum 1 of the polymerized photo	
	polymer material (polymer in the middle)	54
Fig: 3.10	FTIR spectrum 2 of the polymerized photo	
	polymer material (polymer in the middle)	55
Fig: 3.11	IR spectrum 1 of the polymerized photo polymer	
	material (base layer)	56
Fig: 3.12	FTIR spectrum 1 of the polymerized photo	
	polymer material (base layer)	57
Fig: 3.13	FTIR spectrum 2 of the polymerized photo	
	polymer material (base layer)	58
Fig: 3.14	IR spectrum photopolymer dissolve solution	59
Fig: 3.15	CR IR spectrum	64
Fig: 3.16	polyethylene therypthyalate (PET)	65
Fig: 3.17	2-chloro-1, 3-butadiene commonly known as chloroprene	65
Fig: 3.18	Tri-methyl propane tri-acrylate (TMPTA)	65
Fig: 3.19	Photo initiator absorb UV light become active radical	66
Fig: 3.20	Photo initiator reacts with neoprene elastomer	66
Fig: 3.21	Photo initiator reacts with TMPTA	67
Fig: 3.22	Cross linking of Neoprene radical and TMPTA radical	68
Fig: 3.23	Cross link polymer chain	69
Fig: 3.24	Skeleton diagram of cross link polymer chain	69
Fig: 3.25	Presents the influence of fictional ability of	
	monomers on the photopolymer blends	71
Fig: 3.26	The interaction of TMPTA with growing grafted	
	chain radical	71
Fig: 3.27	General View of radiation- induced reaction in polymers	72
Fig: 3.28	graph of tensile strength of sample A	73
Fig: 3.29	graph of tensile strength of control sample	74
Fig: 3.30	graph of tensile strength of sample B	75

Fig: 3.31 graph of tensile strength of Commercial available		
	adhesive	76
Fig: 3.32	graphical present of the peel strength value	77
Fig: 3.33	Tensile Strength Graph of Contol-1	79
Fig: 3.34	Tensile Strength Graph of formula A1	80
Fig: 3.35	Tensile Strength Graph of formula B1	81
Fig: 3.36	graphical present of the peel strength value	82
Fig: 3.37	Graphical present of the comparative peel strength	
	value of two adhesive formulas	83

List of Tables

Table: 2.01	control formula I in the adhesive	40
Table: 2.02	formula I in the adhesive, formula-A	40
Table: 2.03	formula II in the adhesive, formula-B	41
Table: 3.01	viscosity of random samples	43
Table: 3.02	Laboratory distillation result of sample A	43
Table: 3.03	Laboratory distillation result of sample B	43
Table: 3.04	Laboratory distillation result of sample C	44
Table: 3.05	Different boiling points with pneumatic vacuum generator	45
Table: 3.06	IR Absorbance of Common Functional Groups	61
Table: 3.07	explanation of characteristic peaks on the IR- spectrum	64
Table: 3.08	comparing adhesive bond strength	77
Table: 3.09	adjust the formula by Change the polymeric row materials	78
Table: 3.10	comparing adhesive bond strength	82

ACKNOWLEDGEMENT

I express my deep appreciation and gratitude to my supervisor Dr. Laleen Karunanayake, senior lecture and couse-cordinater Polymer science and Polymer technology, Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura for his valuable guidance and assistance to complete this thesis. I also wish to express my deep gratitude to my supervisor, Mr. Lal Motha Manager Rubber and Plastic Group at Industrial Technical Institute (ITI) for his valuable guidance and direction to complete this thesis.

I wish to record here with deep sense of gratitude more than as can be expressed, here the knowledge which acquired Mr. Nath Kotegoda, Director Operation at SHORE TO SHORE Limited Sri Lanka. He placed his knowledge in this field at my disposal and encouraged me to complete this thesis. I also wish to delivery my thanks to Mr. Beuno Frenando, Chief Executive officer/ Chairmen Jony Frenandu Director and Gamini Wejewardana General Manager Technical SHORE TO SHORE Limited for their kind advice and guidance. I offer them a very special word of thanks for carefully reading through all my drafts and made a number of useful comments and suggestion. Despite the pressure of work, they made themselves available whenever I need their help and guidance. To them I owe a profound debt of gratitude.

I wish to mention here with deep appreciation Dr. Susantha Sriwardne, Senior Research Officer and Mrs. Manel Mahanama Experimental officer, Rubber Research Institute (RRI) Rathmalana for providing useful discussion and research guidance to complete this project work and thesis.

I wish to thanks research officers at Industrial Technical Institute (ITI) Mr. Chandana Katugaha, Mr. Neranjan Danapla, Mr. L. C. D Nayanajith, and Mr. K. D. Y Karannagoda (Technical Assistant) for their kind assistance and help provided for the experimental work.

I wish to thanks managers and Executives at SHORE TO SHORE limited Sri Lanka Mr. Jeno Frenando, product development manager, Thushara Frenandu Asian IT Manager, Mr. Gunashelan, Mr. Gayan Sanjewa, and Mr. Rohantha for their kind assistance, help and friendly co-operation provided to complete this thesis.

Special thanks are due to the entire person who helps me willing in various ways during this period.

List of abbreviation

Abum	-	Abundance level
Abs	3 	Absorbance
Act	-	Actual temperature
ASTM	-	American Standard Testing Manual
AR	-	Analytical Reagent
bp	-	Boiling Point
CH_2Cl_2	-	Dichloromethane
EtOAc	ue (1	Ethyl acetate
FDA	-	Food and Drug Administration
f.p.	-	Flash point
FT-IR	-	Furrier Transfer-Infra Red
GC		Gas Chromatography
GC-IR	×	Gas Chromatography- Infra Red
GC/MS		Gas Chromatography/Mass spectroscopy
HPLC	-	High performance Liquid Chromatography
Hz	-	Hertz
IR	-	Infra Red
ISO LDPE	_	International Standard Organization Low Density polyethylene
LLDPE	-	Linear Low Density polyethylene
MeOH	-	Methanol
m.w.	. :	Molecular weight
Мр		Melting Point
MW	-	Molecular weight
MG	-	Methyl Grafted Natural Rubber
MHz	-	Mega Hertz
NMR	-	Nuclear magnetic Resonance
PE	-	Polyethylene

PET	R ij	polyethylene Threpthalate
ppm		Parts per million
RH	-	Relative Humidity
rpm	-	Revolution per minute
Set	-	Set Temperature
TLC		Thin Layer Chromatography
TMPTA	-	Tri-methyl propane tri-acrylate
UV		Ultra Violet
λ_{max}	-	Maximum wave Length
V _{max}	(-	Maximum Frequency

Abstract

Photopolymers are imaging materials, composition is based on polymer, which can be selectively polymerized and/ or cross-linked upon image vice exposed light radiation such as ultra-violet light. These image mainly used in printing industry in colours vice printing and the varnishing. The Plate material is exposed to an ultraviolet light through a high contrast negative. The UV cross-links the polymers and develops the image. The unexposed portion of the negative is washed off with solvent, dried and post exposed.

These Photopolymer plate and solvent are waste in printing industry after processing and usage. Both these materials are not reused in the industry today. I investigated the possibility of reuse of the plate washed solvent and waste photopolymer for another application.

The exposed and unexposed photopolymer materials were identified using FTIR analysis. They consist of 2-chloro-1, 3-butadiene, Tri-methyl propane tri-acrylate (TMPTA) prepolymer and photo initiator. These prepolymeric materials become harder after UV cross-linking.

One objective of this project is the recovery of solvent used to develop the photopolymer. The distillation was done at 180°C and it efficiency was increased by applying vacuum.

The other objective is the reuse of the waste exposed and unexposed photopolymer plates. They were used in a preparation of an adhesive after mitigation with neoprene rubber MgO, and ZnO and dissolved in toluene/MEK solvent system. Adhesive properties were compared with commercial available adhesives. Unexposed photopolymer materials found to show better properties. The composition of adhesive can be adjusted to improve the properties of adhesive. The adhesive developed can be used to paste various plastic and paper materials.