Forecasting Physical, Chemical and Biological Water Quality Parameters of Kotmale, Victoria, Randenigala and Rantambe Reservoirs Using DYRESM-CAEDYM Model

by

Karandagolle Gedara Abeysinghe Mudiyanselage

Chandana Sanjeewa Abeysinghe

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Zoology on 2005.

DECLARATION

The work described in this thesis was carried out by me under the supervision of Prof. S. Piyasiri and Prof. K.D.W. Nandalal and a report on thesis has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

Signature of the candidate

01/10/07

Date

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Signature

05/10/07 .

Date

Signature

01/10/07

Date

Prof. S. Piyasiri

Department of Zoology,

University of Sri Jayewardenepura,

Nugegoda, Sri Lanka.

Prof. K.D.W. Nandalal

Department of Civil Engineering,

University of Peradeniya,

Peradeniya, Sri Lanka.

DEDICATION

TO

MY PARENTS

AND

MY WIFE

CONTENTS

	CONTENTS				
	LIST OF TABLES				
	LIS	LIST OF FIGURES			
	ABE	BREVI	ATIONS	xi	
	ACH	xii			
	ABS	xiii			
1	INT	RODU	CTION	1	
	1.1 Processes in Reservoirs and their Modelling				
	1.2	Wate	r Quality Considerations in Reservoir Management	7	
		1.2.1	Water Use and Water Quality	8	
		1.2.2	Treatment and Control Techniques	10	
	1.3	Objec	ctives of the Study	11	
	1.4 Description of the Study Area			12	
		1.4.1	Kotmale Reservoir	12	
		1.4.2	Victoria Reservoir	16	
		1.4.3	Randenigala Reservoir	20	
		1.4.4	Rantambe Reservoir	24	
1.5 Descrip			iption of the Model	26	
		1.5.1	Hydrodynamic model	26	
		1.5.2	Ecological model	28	
		1.5.3	Input Requirements	29	
		1.5.4	Model Output	31	

2	LIT	ERATURE REVIEW 32				
	2.1	Stratification of Lakes and Reservoirs 32				
	2.2	Reservoir modeling 3				
	2.3	Opera	tions of	Reservoirs for Quality Control	43	
3	ME	гнор	OLOGY		50	
	3.1	Data collection 50				
	3.2	Reser	voir simu	lation model DYRESM-CAEDYM	51	
	3.3	Estim	Estimation of Short wave Radiation 5			
	3.4	Estim	Estimation of Daily inflow temperature 57			
	3.5	Mode	l Calibra	tion and Verification	52	
	3.6	Statis	tical Ana	lysis	53	
	3.7	Impa	t of Rele	ases on Reservoir Water Quality	54	
4	RES	SULTS			55	
	4.1	Mode	l Calibra	ation, Verification and Application for the Kotmale	55	
		Reservoir				
		4.1.1	Calibrat	ion of the DYRESM	55	
			4.1.1.1	Reservoir mass balance	56	
			4.1.1.2	Water Temperature	56	
			4.1.1.3	Sensitivity analysis	59	
		4.1.2	Verifica	tion of the DYRESM	61	
			4.1.2.1	Water Temperature	61	
		4.1.3	Calibrat	ion of the DYRESM-CAEDYM	64	
			4.1.3.1	Nitrate	66	
			4.1.3.2	Ammonia	66	
			4.1.3.3	Orthophosphorus	69	
			4.1.3.4	pH	69	
			4.1.3.5	Dissolved Oxygen	72	

	4.1.4	Verification of the DYRESM-CAEDYM		
		4.1.4.1	Nitrate	74
		4.1.4.2	Ammonia	74
		4.4.4.3	Orthophosphorus	77
		4.1.4.4	pH	77
		4.1.4.5	Dissolved Oxygen	80
	4.1.5	Applica	tion of the model	82
		4.1.5.1	Simulation of understanding stratification cycle	82
		4.1.5.2	Simulation of impact of the withdrawal quantity	84
		4.1.5.3	Simulation of impact of the withdrawal level	85
4.2	Mode	l Calibra	tion and Verification for the Victoria Reservoir	92
	4.2.1	Calibrat	ion of the DYRESM	92
		4.2.1.1	Reservoir mass balance	92
		4.2.1.2	Water Temperature	93
	4.2.2	Verifica	tion of the DYRESM	96
		4.2.2.1	Water Temperature	96
	4.2.3	Applica	tion of the model	99
		4.2.3.1	Simulation of understanding stratification cycle	99
		4.2.3.2	Simulation of impact of the withdrawal quantity	100
		4.2.3.3	Simulation of impact of the withdrawal level	100
4.3	Mode	l Calibra	tion and Verification for the Randenigala Reservoir	103
	4.3.1	.3.1 Calibration of the DYRESM		
		4.3.1.1	Reservoir mass balance	103
		4.3.1.2	Water Temperature	104
	4.3.2	Verifica	tion of the DYRESM	107
		4.3.2.1	Water Temperature	107
	4.3.3	Applicat	tion of the model	110
		4.3.3.1	Simulation of understanding stratification cycle	110
		4.3.3.2	Simulation of impact of the withdrawal quantity	111
		4.3.3.3	Simulation of impact of the withdrawal level	111

	4.4	Mode	el Calibration and Verification for the Rantambe Reservoir		
		4.4.1	Calibration of the DYRESM		
			4.4.1.1	Reservoir mass balance	114
			4.4.1.2	Water Temperature	115
		4.4.2	Verifica	tion of the DYRESM	118
			4.4.2.1	Water Temperature	118
		4.4.3	Application	tion of the model	121
			4.4.3.1	Simulation of understanding stratification cycle	121
			4.4.3.2	Simulation of impact of the withdrawal quantity	122
			4.4.3.3	Simulation of impact of the withdrawal level	122
5	DIS	CUSSI	ON		123
6	CONCLUSIONS			129	
7	REFERENCES			132	
8	APP	ENDIC	CES		
		APPEN	DIX 1: I	LIST OF PUBLICATIONS	144
	APPENDIX 2: DYRESM Model			146	
	8	APPEN	DIX 3: 0	CAEDYM Model	165

LIST OF TABLES

1.1	General and morphometric characteristics and Physico-chemical data of the Kotmale reservoir	14
1.2	Average monthly climatological elements of the Kotmale reservoir for the period 1990-1999	15
1.3	General and morphometric characteristics and Physico-chemical data of the Victoria reservoir	18
1.4	Average monthly climatological elements of the Victoria reservoir for the period 1992-1999	19
1.5	General and morphometric characteristics and Physico-chemical data of the Randenigala reservoir	22
1.6	Average monthly climatological elements of the Randenigala reservoir for the period 1993-2000	23
1.7	General and morphometric characteristics and physico-chemical data of the Rantambe reservoir	25
4.1	Hydraulic and thermal parameters specified as Kotmale reservoir model (DYRESM) input	55
4.2	Goodness-of-fit statistics between observed and simulated temperatures during the calibration period for the Kotmale reservoir	59
4.3	Goodness-of-fit statistics between observed and simulated temperatures during the verification period for the Kotmale reservoir	62
4.4	Rate coefficients used in the water chemistry simulations and specified as Kotmale reservoir model (CAEDYM) input	64
4.5	Hydraulic and thermal parameters specified as Victoria reservoir model (DYRESM) input	92
4.6	Goodness-of-fit statistics between observed and simulated temperatures during the calibration period for the Victoria reservoir	94

v

- 4.7 Goodness-of-fit statistics between observed and simulated temperatures
 97 during the verification period for the Victoria reservoir
- 4.8 Hydraulic and thermal parameters specified as Randenigala reservoir 103 model (DYRESM) input
- Goodness-of-fit statistics between observed and simulated temperatures 105 during the calibration period for the Randenigala reservoir
- 4.10 Goodness-of-fit statistics between observed and simulated temperatures 108 during the verification period for the Randenigala reservoir
- 4.11 Goodness-of-fit statistics between observed and simulated temperatures 116 during the calibration period for the Rantambe reservoir
- 4.12 Goodness-of-fit statistics between observed and simulated temperatures 119 during the verification period for the Rantambe reservoir

LIST OF FIGURES

1.1	Sampling stations and major inflowing rivers of the Kotmale reservoir	12
1.2	Sampling stations and major inflowing rivers of the Victoria reservoir	16
1.3	Sampling stations and major inflowing rivers of the Randenigala reservoir	20
1.4	Sampling stations and major inflowing rivers of the Rantambe reservoir	24
4.1	Observed and simulated reservoir level in the Kotmale reservoir at St 1 during calibration	56
4.2	Observed and Simulated near-surface and near-bottom water temperatures in the Kotmale reservoir at St 1 during calibration	57
4.3	Measured and simulated vertical profiles of water temperature at Kotmale reservoir St 1, during 1995.	58
4.4	Sensitivity analysis of DYRESM parameters, mean albedo of water, emissivity of a water surface and light extinction coefficient based on temperature profiles on 21/3/1995, 3/6/1995, 25/9/1995 and 28/12/1995.	60
4.5	Measured and simulated near-surface and near-bottom water temperatures in the Kotmale reservoir at St 1 during the verification period.	61
4.6	Measured and simulated vertical profiles of water temperature at Kotmale reservoir St 1, during 1996.	63
4.7	Measured and simulated vertical profiles of nitrate concentrations at Kotmale reservoir St 1, during 1995.	67
4.8	Measured and simulated vertical profiles of NH ₄ at Kotmale reservoir St 1, during 1995.	68
4.9	Measured and simulated vertical profiles of Orthophosphorus at Kotmale reservoir St 1, during 1995.	70

vii

- 4.10 Measured and simulated vertical profiles of pH at Kotmale reservoir 71 St 1, during 1995.
- 4.11 Measured and simulated vertical profiles of dissolved oxygen 73 concentrations at Kotmale reservoir St 1, during 1995.
- 4.12 Measured and simulated vertical profiles of nitrate concentrations at 75 Kotmale reservoir St 1, during 1996.
- 4.13 Measured and simulated vertical profiles of NH₄ at Kotmale reservoir 76 St 1, during 1996.
- 4.14 Measured and simulated vertical profiles of Phosphorus concentrations 78 at Kotmale reservoir St 1, during 1996.
- 4.15 Measured and simulated vertical profiles of pH at Kotmale reservoir 79 St 1, during 1996.
- 4.16 Measured and simulated vertical profiles of dissolved oxygen 81 concentrations at Kotmale reservoir St1, during 1995.
- 4.17 Distribution of water temperature in the Kotmale reservoir St 1, from4.17 January 1997 to December 1999: (a) Historical operation, (b) Releasequantity reduced, and (c) Release from outlets at different levels.
- 4.18 Distribution of nitrate concentrations in the Kotmale reservoir St 1, from
 Anuary 1997 to December 1999: (a) Historical operation, (b) Release
 quantity reduced, and (c) Release from outlets at different levels.
- 4.19 Distribution of ammonia concentrations in the Kotmale reservoir St 1, 88 from January 1997 to December 1999: (a) Historical operation, (b) Release quantity reduced, and (c) Release from outlets at different levels.
- 4.20 Distribution of orthophosphate concentrations in the Kotmale reservoir 89
 St 1, from January 1997 to December 1999: (a) Historical operation, (b)
 Release quantity reduced, and (c) Release from outlets at different levels.

- 4.21 Distribution of pH values in the Kotmale reservoir St 1, from January 90
 1997 to December 1999: (a) Historical operation, (b) Release quantity reduced, and (c) Release from outlets at different levels.
- 4.22 Distribution of dissolved oxygen concentrations in the Kotmale reservoir 91
 St 1, from January 1997 to December 1999: (a) Historical operation,
 (b) Release quantity reduced, and (c) Release from outlets at different levels.
- 4.23 Observed and simulated reservoir level in the Victoria reservoir at St 293 during calibration
- 4.24 Measured and simulated vertical profiles of water temperature at 95 Victoria reservoir St 2, during 1995.
- 4.25 Measured and simulated vertical profiles of water temperature at
 98 Victoria reservoir St 2, during 1996.
- 4.26 Distribution of water temperature in the Victoria reservoir St 2, from 102 January 1997 to December 1999: (a) Historical operation, (b) Release quantity reduced, (c) Release quantity deduced, and (d) Release from outlets at different levels.
- 4.27 Observed and simulated reservoir level in the Randenigala reservoir at 104 St3 during calibration
- 4.28 Measured and simulated vertical profiles of water temperature at 106 Randenigala reservoir St 3, during 1995.
- 4.29 Measured and simulated vertical profiles of water temperature at 109 Randenigala reservoir St 3, during 1996.
- 4.30 Distribution of water temperature in the Randenigala reservoir St 3, from 113 January 1997 to December 1999: (a) Historical operation, (b) Release quantity reduced, (c) Release quantity deduced, and (d) Release from outlets at different levels.
- 4.31 Observed and simulated reservoir level in the Rantambe reservoir at St 1 114 during calibration

- 4.32 Measured and simulated vertical profiles of water temperature at 117 Rantambe reservoir
- 4.33 Measured and simulated vertical profiles of water temperature at 120 Rantambe reservoir St 1, during 1996.
- 4.34 Distribution of water temperature in the Rantambe reservoir St 1, from 123 January 1997 to December 1999: (a) Historical operation, (b) Release quantity reduced, and (c) Release from outlets at different levels.
- A-3.1 Relationship between the main state variables, shown in boxes, and the 165 biochemical processes represented in the model.

168

A-3.2 Inverted Michaelis-Menton limitation function

Х

ABBREVIATIONS

NH4	- Ammonia
CAEDYM	- Computational Aquatic Ecosystem DYnamics Model)
DO	- Dissolved Oxygen
DYRESM	- DYnamic REservoir Simulation Model
EWS	- Emissivity of a water surface
LEC	- Light extinction coefficient
MARE	- Mean absolute relative error
MAW	- Mean albedo of water
NO ₃	- Nitrate
PO ₄	- Orthophosphorus
RMSE	- Root mean squared error

ACKNOWLEDGEMENTS

I am most grateful to Prof. S. Piyasiri and Prof. K.D.W. Nandalal for providing the opportunity for me to carry out the present study under their supervision. I very much appreciate their excellent advice, enthusiastic guidance and continuous encouragement given towards the successful completion of this study. Their valuable suggestions and constructive criticism during the course of the study were invaluable.

I wish to thank University of Sri Jayewardenepura and National Science Foundation, Sri Lanka for providing financial assistance.

I would like to thanks Headworks Administration, Operation and Maintenance unit of the Mahaweli Authority of Sri Lanka and Natural Resource Management Center of the Department of Agriculture at Peradeniya, Sri Lanka for providing necessary data.

Special thanks go to Centre for Water Research, University of Western Australia for giving permission to use the DYRESM-CAEDYM model.

Finally, I wish to thank Mr. K.P.G.W. Senadeera for his encouragement and kind corporation.

Forecasting Physical, Chemical and Biological Water Quality Parameters of Kotmale, Victoria, Randenigala and Rantambe Reservoirs Using DYRESM-CAEDYM Model.

K.G.A.M.C.S. Abeysinghe

ABSTRACT

The Mahaweli is the longest river (335 km) in Sri Lanka with an annual discharge of 8878×10^6 m³ of water into the sea. Several dams have been built across the river for the purpose of irrigation and hydroelectric power generation. The four major reservoirs of the "Accelerated Mahaweli Project" are Kotmale, Victoria, Randenigala and Rantambe.

Strong thermal stratification in a reservoir may result in oxygen depletion along the vertical profile downwards leading to their eutrophication. Several reservoirs in the Mahaweli Project experienced water quality linked problems in recent times. A one-dimensional reservoir hydrodynamic model DYRESM was calibrated and validated for the Kotmale, Victoria, Randenigala and Rantambe reservoirs to predict water level, temperature, salinity and density in it. Calibration and validation are strengthened by calculating several goodness-of-fit statistics. After calibration and verification of hydrodynamic model DYRESM for the Kotmale reservoir, it was coupled with ecological model CAEDYM. The coupled model DYRESM-CAEDYM simulates water level, temperature, salinity, density and 5 water quality constituents (NO₃, NH₄, PO₄, pH, and DO).

xiii

The model enables the prediction of thermal stratification and water quality in the reservoir body using data that can be collected easily, such as climatological data and reservoir inflow quantity and quality. This can minimize huge cost involved in monitoring water quality in the reservoir body.

The calibrated and verified hydrodynamic model (DYRESM) was used to run different operational scenarios which useful to make decisions for improving water quality in the Mahaweli reservoirs (Kotmale, Victoria, Randenigala and Rantambe). Simulations were developed to evaluate the stratification cycle during a period of 3 years; impact of the withdrawal quantity on stratification; and simulations also were developed to assess the impact of the withdrawal level on stratification.

The three year long (1997-1999) simulations of Kotmale, Victoria, Randenigala and Rantambe reservoirs showed that the annual cycle of stratification clearly. Thermal stratification is strong during the relatively warm period of March-August in all the three years. Thermal stratification in a reservoir determines the water quality in it and thus the model enables predicting adverse effects with respect to water quality in the reservoir. Thermal stratification and other water quality are affected by the change in the release quantity. When release was decreased by 25% for the period of three month (at the onset of stratification period) in all the three years, reservoir stratification has slightly decreased and thus DO concentration has slightly improved in the Kotmale reservoir. However, the improvement in the reservoir during the warm period is trivial. Victoria, Randenigala and Rantambe reservoirs follow the same results with the same operation. The outlet elevation affects the thermal stratification and water quality in the reservoir. When water is released through both outlets (upper outlet 75% of water and

lower one 25% of water) for the period of three month (during the onset of stratification period), the thermocline has becomes deeper. The surface temperature and other water quality have not changed, but the bottom water quality has improved considerably. This suggests the possibility to change the strong stratification in the Kotmale, Victoria, Randenigala and Rantambe reservoirs by manipulating the releases.

Reservoir managers will be able to take precautionary measures by controlling stratification in the reservoir by manipulating withdrawals. The study, based on two different withdrawal patterns, shows that stratification in these reservoirs could be altered by manipulating the withdrawal. Thus, the impact of many alternative operational patterns on thermal stratification in the reservoir could be studied with the help of the model in advance to avoid adverse water quality conditions in the reservoir as well as supplied from the reservoir.

Results from this study will provide reservoir management with information to better understand how changes in hydrology and water quality in the basin affects water quality in the reservoir. With this information, managers will be able to more effectively manage their reservoirs.