GROWTH, YIELD, CARBON FIXATION AND ECONOMICS OF RUBBER CULTIVATION

IN SRI LANKA

BY

ENOKA SHIROMALEE MUNASINGHE

Thesis submitted to the University of Sri Jayewardenepura

for the award of the

Degree of Doctor of Philosophy in Forestry

2009

DECLARATION

The work described in this thesis was carried out by me under the supervision of Dr. (Mrs) U.A.D.P. Gunawardena of the University of Sri Jayewardenepura and Dr. V.H.L. Rodrigo of the Rubber Research Institute of Sri Lanka and a report on this has not been submitted in whole or in part to any university or any institution for another Degree/Diploma.

Signature:

Name : Enoka Shiromalee Munasinghe Date : 24, 09, 2009.

SUPERVISORS' CERTIFICATION

We certify that this thesis meets the required standard for the Degree of Doctor of Philosophy.

reep

Dr. (Mrs.) U. A. D. P. Gunawardena – Dept. of Forestry & Environmental Science University of Sri Jayewardenepura Nugegoda Sri Lanka

. Dr. V. H.L. Rodrigo

Dept. of Biochemistry and Physiology Rubber Research Institute of Sri Lanka Agalawatta Sri Lanka

"DEDICATED TO THE MEMORY OF ONE I LOST"

TABLE OF CONTENTS

		Page
TABI	LE OF CONTENTS	i
LIST	OF TABLES	ix
LIST	OF FIGURES	xi
LIST	OF PLATES	xv
ABBI	REVIATIONS	xvi
ACK	NOWLEDGEMENT	xix
ABST	TRACT	xxi
CHA	PTER 1 : BACKGROUND	1
CHA	PTER 2 : LITERATURE REVIEW	- 6
2.1	Importance of rubber cultivation	6
2.2	Development of rubber industry	9
2.3	Morphology of rubber	10
2.4	Climatic requirements of rubber	11
2.5	Mathematical approach to quantify the growth and yield of rubber	12
2.6	Rubber cultivation in Sri Lanka	13
2.7	Role of carbon in greenhouse effect	17
2.8	International interventions in climate change	19
2.9	Sri Lankan potential in carbon market	22
2.10	Economics of climate change	25
2.11	Economic evaluation	26

i

2.12	Econo	omics in sustainable development	28
2.13	Practi	Practical valuation techniques	
2.14	Benef	it Cost Analysis	35
2.15	Implic	cation of Benefit-Cost Analysis in economic analyses	39
2.16	Multi	criteria analysis	43
2.17	Policy	v instruments for plantation management	43
2.18	Conce	ptual framework for rubber cultivation in Sri Lanka	46
CHA	PTER 3	: GROWTH AND DEVELOPMENT OF RUBBER UNDER DIFFERENT GROWTH CONDITIONS	48
3.1	Introd	luction	
5.1	3.1.1	Importance of growth assessment	48
		Factors underpinning the growth of rubber	48
3.2	Objectiv		51
3.3	Method		51
	3.3.1	Study area	52 52
	3.3.2	Planting materials	53
	3.3.3	Sampling	53
	3.3.4	Assessments	54
		3.3.4.1 Non destructive growth assessments	54
		3.3.4.2 Destructive growth assessments	55
		3.3.4.3 Organic carbon content	59
3.4	Results		64
	3.4.1	Girth development	64

ii

	3.4.2	Height development	65
	3.4.3	Bark thickness	66
	3.4.4	Wood density	67
	3.4.5	Timber log volume	69
		3.4.5.1 Total timber log volume	69
		3.4.5.2 Sawnable timber log volume	70
	3.4.6	Biomass	71
		3.4.6.1 Biomass distribution among different aboveground	71
		components of the tree	
		3.4.6.2 Biomass distribution among different belowground	72
		components of the tree	
	3.4.7	Organic carbon content	73
3.5	Discuss	on	74
CHA	PTER 4	MODELS FOR PREDICTING GROWTH AND YIELD	78
		COMPONENTS OF RUBBER	
4.1	Introdu	ction	78
4.2	Objectiv	/e	79
4.3	Method	ology	80
4.4	Results		87
	4.4.1	Ontogenetic changes in tree diameter	87
	4.4.2	Ontogenetic height development	89
	4.4.3	Ontogenetic variation of latex yield	91
	4.4.4	Changes in tree density	92

	4.4.5	Relationship between timber log volume with diameter and total	93
		height of the tree	
	4.4.6	Relationship between biomass with diameter and total height of	96
		the tree	
	4.4.7	Relationship between carbon content with diameter and total	98
		height of the tree	
	4.4.8	Validation of models developed for total timber, total biomass	100
		and total carbon of the tree	
	4.4.9	Development of yield tables	102
4.5	Discuss	ion	104
CHA	PTER 5	ECONOMICS OF RUBBER CULTIVATION IN	109
		PLANTATION SECTOR OF SRI LANKA	
5.1	Introd	uction	109
5.2	Object	tive	110
5.3	Metho	dology	110
	5.3.1	Estimation of costs	111
		5.3.1.1 Inputs and costs of rubber cultivation	111
		5.3.1.2 Inputs and costs of intercrops	113
	5.3.2	Estimation of benefits	. 115
		5.3.2.1 Estimation of benefits from rubber	115
		5.3.2.2 Estimation of benefits from intercrop	117
	5.3.3	Financial analysis of rubber	118
	5.3.4	Economic analysis of rubber	122

5.4 Results		123	
	5.4.1	Cost of rubber cultivation	123
	5.4.2	Cost of intercropping	126
	5.4.3	Revenue from rubber	128
	5.4.4	Revenue from intercropping	129
	5.4.5	Financial analysis of rubber under different scenarios	132
	5.4.6	Economic analysis of rubber under different scenarios	138
5.5	Discus	ssion	145
CHAP	TER 6	ADOPTION AND PROFIABILITY OF PRINCIPAL RUBBER	151
		BASED INTERCROPING SYSTEMS IN SMALLHOLDINGS IN	
		SRI LANKA	
6.1	Introdu	uction	151
6.2	Object	ive	154
6.3	Metho	dology	154
	6.3.1	Preliminary survey on smallholdings	155
	6.3.2	Socio economic assessment on the farmers practising three major	157
		rubber based intercrops	
	6.3.3	Statistical analysis of information on smallholdings	157
6.4	Result	S	160
	6.4.1	Status of the intercropping systems in major rubber growing	160
		regions	
	6.4.2	Benefit -Cost analysis of three widely adopted intercropping	164
		systems under the smallholder condition	

v

	6.4.3	Socio economic factors underpinning the profitability of three	165
		widely adopted rubber based intercrops	
	6.4.4	Quantification of the effect of key factors governing the	174
		profitability	
6.5	Discus	sion	178
CHA	PTER 7	: GENERAL DISCUSSION	184
7.1	Potent	ial of rubber cultivation for a CDM project	185
7.2	Impor	tance of growth models in CDM project	191
7.3	Contri	bution of rubber cultivation to the economy of Sri Lanka	193
7.4	Potent	ial changes in the economic lifecycle of rubber	198
7.5	Propos	sals for effective implementation of industry needs	206
CHA	PTER 8	: CONCLUSIONS AND FURTHER STUDIES	209
REF	ERENCE	S	213
APP	ENDICE	S	241
Appe	endix 1.0	List of Publications and Communications from thesis	241
Appe	endix 5.1	Labour and material requirement for initial establishment of	245
		rubber	
Appo	endix 5.2	Labour and material requirement during immature period of	247
		rubber	
App	endix 5.3	Labour and material requirement during mature period of	250

rubber

Appendix 5.4	Labour and material requirement for tea cultivation under	252
Appendix 5.4		232
	rubber	
Appendix 5.5	Labour and material requirement for pineapple cultivation	254
	under rubber	
Appendix 5.6	Labour and material requirement for banana cultivation	256
	under rubber	
Appendix 5.7	Carbon prices from various sources	257
Appendix 5.8	Cost Insurance and Freight (CIF) values of imported	259
	fertilizers	
Appendix 5.9	Sectoral, aggregate and primary input conversion factors	260
	used for the conversion of market values to real values in	
	economic analysis	
Appendix 5.10	Cost and material usage of rubber cultivation according to	261
	the activity for 30 year period	
Appendix 5.11(a)	Cost of labour usage in the initial establishment of rubber	262
Appendix 5.11(b)	Cost of material usage in the initial establishment of rubber	263
Appendix 5.12(a)	Cost of labour usage in the maintenance of the unyielding	264
	period (immature upkeep) of rubber	
Appendix 5.12(b)	Cost of material usage in the maintenance of the unyielding	265
	period (immature upkeep) of rubber	
Appendix 5.13(a)	Cost of labour usage in the mature upkeep of rubber	266
Appendix 5.13(b)	Cost of material usage in the mature upkeep of rubber	267
Appendix 5.14(a)	Cost of labour usage in the initial establishment of tea	268

Appendix 5.14(b)	Cost of material usage in the initial establishment of tea	269
Appendix 5.14(c)	Cost of labour usage in the upkeep of tea during the	270
	immature phase of rubber	
Appendix 5.14(d)	Cost of material usage in the upkeep of tea during the	271
	immature phase of rubber	
Appendix 5.14(e)	Cost of labour usage in the upkeep of tea during the mature	272
	phase of rubber	
Appendix 5.14(f)	Cost of material usage in the upkeep of tea during the mature	273
	phase of rubber	
Appendix 5.15(a)	Cost of labour usage in the upkeep of pineapple during the	274
	immature phase of rubber	
Appendix 5.15(b)	Cost of material usage in the upkeep of pineapple during the	275
	immature phase of rubber	
Appendix 5.16(a)	Cost of labour usage in the upkeep of banana during the	276
	immature phase of rubber	
Appendix 5.16(b)	Cost of material usage in the upkeep of banana during the	277
	immature phase of rubber	
Appendix 6.1	Questionnaire used to gather the information on rubber based	278
	intercropping systems in major rubber growing regions of the	
	country	
Appendix 6.2	Questionnaire used to gather the information on rubber based	279
	tea, pineapple and banana intercropping practices form	
	smallholders	

LIST OF TABLES

Table 3.1	Percentage distribution of total timber log volume (up to 20	70
	cm girth) of three mature genotypes of rubber	
Table 3.2	Percentage distribution of sawnable timber log volume (up to	71
	50 cm girth) of three mature genotypes of rubber	
Table 3.3	Organic carbon content in biomass of different components	74
	in a mature tree of Hevea genotype RRIC 100	
Table 4.1	Model predicted values of latex rubber, total timber volume,	103
	total biomass and total carbon content in the rubber crop for	
	Wet and Intermediate zones	
Table 5.1	Cost of rubber cultivation on labour and material (Rs./ha)	125
Table 5.2	Cost of tea cultivation under rubber (Rs./ha)	126
Table 5.3	Cost of pineapple cultivation under rubber (Rs./ha)	127
Table 5.4	Cost of banana cultivation under rubber (Rs./ha)	128
Table 5.5	Summary of financial analysis of the rubber cultivation under	133
	12 different scenarios	
Table 5.6	Summary of economic analysis of the rubber cultivation	139
	under 12 different scenarios	
Table 6.1	Scoring criteria used for categorizing data of the	159
	questionnaire based survey	
Table 6.2(a)	Summary of statistical correlation (Spearman) analysis for	167
	the parametric socio economic factors underpinning the	

profitability of rubber based intercropping systems

Table 6.2(b)	Summary of statistical correlation (Spearman) analysis for	169
	the parametric technical and land related factors	
	underpinning the profitability of rubber based intercropping	
	systems	
Table 6.3(a)	Summary of statistical correlation (Pearson) analysis for the	171
	socio economic factors underpinning the profitability of	
	rubber based intercropping systems	
Table 6.3(b)	Summary of statistical correlation (Pearson) analysis for the	172
	technical and land related factors underpinning the	
	profitability of rubber based intercropping systems	
Table 6.4(a)	The average ranks obtained using Kruskal-Wallis test for the	177
	problems associated with practising rubber based	
	intercropping systems	
Table 6.4(b)	The average ranks obtained using Kruskal-Wallis test for the	177

reasons of farmer motivation to rubber based intercropping systems

LIST OF FIGURES

Figure 2.1	CDM project design structure	24
Figure 2.2	Dimensions of Environmental Economics	28
Figure 2.3	Sustainable development triangle-key elements and	30
	interconnections (corners, sides, centre)	
Figure 2.4	Categories of economic values attributed to environmental	32
	assets	
Figure 2.5	Economic value of an environmental good	34
Figure 2.6	Conceptual framework for rubber cultivation in Sri Lanka	47
Figure 3.1	Girth (at 150 cm height) development of rubber tree in	65
	genotype RRIC 100	
Figure 3.2	Height development of rubber tree in genotype RRIC 100	66
Figure 3.3	Variation of bark thickness along the genotype RRIC 100	67
	tree in the Wet Zone	
Figure 3.4	Wood density variation of different tree components of	68
	genotype RRIC 100 tree in the Wet Zone	
Figure 3.5	Ontogenetic variation of wood density (at 150 cm height) of	69
	genotype RRIC100 in the Wet Zone	
Figure 3.6	Percentage biomass distribution in the aboveground	72
	components of two mature genotypes	
Figure 3.7	Percentage biomass distribution among belowground	73
	components of mature RRIC 100 genotype	
Figure 4.1	Schematic diagram explaining the process of model	86

development

Figure 4.2	Diameter development of rubber tree in Wet and	88
	Intermediate zones of Sri Lanka (genotype RRIC 100)	
Figure 4.3	Total height development of rubber tree in Wet and	90
	Intermediate zones of Sri Lanka (genotype RRIC 100)	
Figure 4.4	Yield profile of rubber tree in Wet Zone of Sri Lanka	92
	(genotype RRIC 100)	
Figure 4.5	Ontogenetic variation of tree density in the Wet Zone of Sri	93
	Lanka (genotype RRIC 100)	
Figure 4.6	Relationship of total timber log volume and sawnable timber	95
	log volume (per tree) with the tree diameter (at 150 cm	
	height) and the total height	
Figure 4.7	Relationship of biomass in total timber, total aboveground	97
	biomass, total biomass (per tree) with the tree diameter (at	
	150 cm height) and the total height and total belowground	
	biomass (per tree) with tree diameter	
Figure 4.8	Relationship of carbon in total timber, total aboveground	99
	biomass, carbon in total biomass (per tree) with the tree	
	diameter (at 150 cm height) and the total height and, carbon	
	in total belowground biomass (per tree) with tree diameter	
Figure 4.9	The goodness of the fit of the models for total timber volume,	101
	total biomass and total carbon in a different site with mixed	
	genotypes of rubber	
Figure 5.1	Cost distribution of rubber cultivation among major activities	123

Figure 5.2	Variation of the revenue from latex and scrap rubber with time	129
Figure 5.3	Variation of the revenue from tea, pineapple and banana	131
	with time	
Figure 5.4	The sensitivity of the Net Present Value (NPV) of rubber	134
	cultivation to the changes in the discount rate	
Figure 5.5	The sensitivity of the Net Present Value (NPV) of rubber	135
	cultivation to the changes in the market price of latex	
Figure 5.6	The sensitivity of the Net Present Value (NPV) of rubber	136
	cultivation to the changes in the market price of rubber tree	
Figure 5.7	The sensitivity of the Net Present Value (NPV) of rubber	137
	cultivation to the changes in the market price of carbon	
Figure 5.8	The sensitivity of Net Present Value (NPV) in intercropping	138
	systems to the changes in the market price of their produce	
Figure 5.9	The sensitivity of the Net Present Value (NPV) of rubber	140
	cultivation to the changes in the discount rate under the	
	baseline scenario	
Figure 5.10	The sensitivity of the Net Present Value (NPV) of rubber	- 141
	cultivation to the changes in the price of rubber under the	
	baseline scenario	
Figure 5.11	The sensitivity of the Net Present Value (NPV) of rubber	142
	cultivation to the changes in the price of rubber tree under	
	the baseline scenario	
Figure 5.12	The sensitivity of the Net Present Value (NPV) of rubber	143
	cultivation to the changes in carbon price under the baseline	

scenario

3 The sensitivity of Net Present Value (NPV) in intercropping	144
systems to the changes in the market price of their produce	
under the baseline scenario	4
Distribution of smallholders practising rubber based	160
intercrops in rubber growing regions of Sri Lanka	
2 Distribution of land area under the cultivation of rubber	161
based intercrops in rubber growing regions of the country	
B Distribution of land size under cultivation of rubber based	162
intercrops in rubber growing regions of the country	
Availability of different crops as intercrops of rubber	163
Management condition of the intercropped lands	163
Profit distribution of three main rubber based intercropping	166
systems	
Financial viability of rubber plantation with the changes in	202 -
rotational age in terms of Net Present Value (NPV), Internal	
Rate of Return (IRR) and Benefit-Cost Ratio (BCR)	
Financial viability of rubber plantation (including carbon	204
values) with the changes in rotational age in terms of Net	
Present Value (NPV), Internal Rate of Return (IRR) and	
Benefit Cost Ratio (BCR)	
	 systems to the changes in the market price of their produce under the baseline scenario Distribution of smallholders practising rubber based intercrops in rubber growing regions of Sri Lanka Distribution of land area under the cultivation of rubber based intercrops in rubber growing regions of the country Distribution of land size under cultivation of rubber based intercrops in rubber growing regions of the country Distribution of land size under cultivation of rubber based intercrops in rubber growing regions of the country Availability of different crops as intercrops of rubber Management condition of the intercropped lands Profit distribution of three main rubber based intercropping systems Financial viability of rubber plantation with the changes in rotational age in terms of Net Present Value (NPV), Internal Rate of Return (IRR) and Benefit-Cost Ratio (BCR) Financial viability of rubber plantation (including carbon values) with the changes in rotational age in terms of Net Present Value (NPV), and

LIST OF PLATES

Plate 2.1	Distribution of the rubber cultivation in different	15
	administrative districts of Sri Lanka.	
Plate 3.1	A demonstration on some growth measurements of rubber.	62
Plate 3.2	Destructive growth analysis for timber and biomass.	63
Plate 6.1	Widely adopted rubber based intercropping systems in Sri	156

Lanka.

ABBREVIATIONS

ADSL	-	Agriculture Department of Sri Lanka
AGBM	•	Aboveground Biomass
AGR	-	Absolute Growth Rate
ANRPC	-	Association of Natural Rubber Producing Countries
BCR	-	Benefit Cost Ratio
BGBM	-	Belowground Biomass
BI	-	Renewed bark of base panel of the rubber tree
BM	-	Biomass
BO	-	Virgin bark of base panel of the rubber tree
BCA	-	Benefit Cost Analysis
CDM	-	Clean Development Mechanism
CER	-	Certified Emission Reduction
CIF	-	Cost Insurance and Freight
СОР		Cost of Production
D		Diameter
DNA	÷	Designated National Authority
DOE	-	Designated Operational Entity
DS	-	Divisional Secretaries
EAD	.=	Export Agriculture Department
EB	-	Executive Board
ERP	_	Eppawala Rock Phosphate

xvi

ERU	ie	Emission Reduction Units
ET	-	Emission Trading
FD	-	Forest Department
G-77	-	Group of 77
GDP	-98	Gross Domestic Production
GHG	- 18	Greenhouse Gas
GoSL	-	Government of Sri Lanka
Н	-	Height
HWP	-:	Harvested Wood Products
IRR	-0	Internal Rate of Return
IZ	-	Intermediate Zone
JI	•	Joint Implementation
LULUCF	÷	Land Use Land Use Change and Forestry
MC	×	Marginal Cost
MDF	-	Medium Density Fibre Board
MENR	-	Ministry of Environment and Natural Resources
МОР	-	Muriate of Potash
MPAHA	-	Ministry of Public Administration and Home Affairs
MPI	-	Ministry of Plantation Industries
NPV		Net Present Value
NTFP	-	Non Timber Forest Products
PAC	-	Policy Analysis Circle
PDD	-	Project Design Document
PIN	-	Project Idea Note

xvii

RDDSL	-	Rubber Development Department of Sri Lanka
RDO	-	Rubber Development Officer
RGR	-	Relative Growth Rate
RP	-	Rock Phosphate
RPC	-	Regional Plantation Company
RRISL	-	Rubber Research Institute of Sri Lanka
RSS	-	Ribbed Smoked Sheets
SOC	a 0	Social Opportunity Cost
STFIC		Special Task Force Intercropping
STPR	-	Social Time Preference Rate
ТВМ	-	Total Biomass
TEV	-	Total Economic Value
TPD	-	Tapping Panel Dryness
TRISL	-	Tea Research Institute of Sri Lanka
TSHDA	- 1 m.	Tea Small Holders Development Authority
TSR	-	Technically Specified Rubber
UNFCCC	-	United Nations Frame Work Convention on Climate Change
WTA	-	Willingness to Accept
WTP	-	Willingness to Pay
WZ	-	Wet Zone
YAP	-	Years after Planting
YPH	-	Yield per Hectare

ACKNOWLEDGEMENT

First and foremost, I wish to express my sincere gratitude to my external supervisor Dr. V.H.L.Rodrigo, Head, Dept. of Biochemistry and Physiology, Rubber Research Institute of Sri Lanka (RRISL) for setting up my study programme and providing invaluable supervision throughout the research. His guidance, intellectual advices, close supervision, endless encouragement and unfailing support far beyond the official level made this effort success. He deserves a special gratitude for the large amount of time allocation in reading the manuscript and the tolerance to my frequent interruptions. It was indeed a privilege to have him as my supervisor.

I am indebted to my internal supervisor, Dr.(Mrs.)U.A.D.P.Gunawardena, Senior Lecturer, Dept. of Forestry and Environmental Science, University of Sri Jayawardenepura (USJ) for her kind supervision, careful perusal of each chapter and invaluable comments provided. Also, she deserves special thanks for her role in the university administrative system by clearing the pathway to pursue my postgraduate study. In particular, the extended period given for the study soothed pressure on me from the disturbances in my personal life.

A special mention must be made of Dr. A. Nugawela, Director RRISL, who was my first research guide in the RRISL for providing me the opportunity to join the institute initially. My thanks are also due to Dr.(Mrs.)W.Wijesuriya of RRISL for her valuable advices and assistance in statistical analyses, staff of the Dept. of Soils and Plant Nutrition of RRISL for helping plant sample analyses, Dept. of Forestry and Environmental Science of USJ for lending instruments for growth measurements and Rubber Development Dept. of Sri Lanka (RDDSL) for providing me necessary information and assistance given to work with smallholders.

I greatly appreciate the technical assistance provided by Mr. W. Karunathilake, Mr. Y. Jayasekera, Mr. R. Handapangoda, and Mr. S. Randunu of RRISL in field measurements and the smallholder survey. I wish to express my gratitude to Mr. & Mrs. Ramesh for providing me a portable computer during the period of writing. I am thankful to the managers of Dartonfield, Padukka, Salawa, Hedigalla, Palm garden, Pussella, Pitiyakanda and Kumarawatta estates and smallholders for allowing me to conduct growth assessments in their fields and providing relevant information. Also, I appreciate the service of Mr. K. Gunawardena of Dartonfield Group for providing me necessary information on demand without any delay. I am obliged to my research colleagues in the RRISL, Dr. Iqbal, Ms. Dhammika, Ms. Sagari and Ms. Shashika - they know what for.

I also acknowledge the research grants of the Council for Agricultural Research Policy (No. 12/530/400) and Climate Change Enabling Activity (Phase II) of Ministry of Environment and Natural Resources for the financial support given.

I would like to pay a special tribute to my husband, Aruna, who has been my greatest emotional asset which enabled me to meet this challenge. His patience, understanding, encouragement and sacrifices led my study to success through the life potholes. My mother, Mrs. Kodithuwakku whose ultimate wish has been my success in education, would have been met by this study. I thank her very much for covering my duties at home on my behalf. A special mention must be made of my little daughter, Nethmi for her continuous inspiration, affection and tolerance to my devotion to studies instead of being with her. Also, I am indebted to my little son Nethra, the one mostly neglected by me during the period of study. Growth, yield, carbon fixation and economics of rubber cultivation in Sri Lanka

Enoka Shiromalee Munasinghe

ABSTRACT

Being an industrial crop, rubber (*Hevea brasiliensis* Muell. Arg.) is exclusively cultivated for income generation though some associated crops in rubber based intercropping systems could partly be used for subsistence. As for any venture, direct and indirect investments made by different stakeholders to promote rubber cultivation in the country are to be justified in financial and economic terms. Obviously, spatial and temporal variability of rubber cultivation with respect to plant growth and yield, management conditions, market flows and stakeholders' perceptions is to be accounted in these financial and economic assessments. Such studies to date have been confined to the general condition prevailed in the plantation sector of Sri Lanka. Therefore, the present study was aimed to assess the financial and economic viability of the rubber cultivation considering its growth in two major agroecological zones: Wet and Intermediate zones, and the potential benefits received from latex, timber/firewood and carbon credits in CDM market under the average management conditions with both sole and intercropping. Further, the study was met to identify the key factors underpinning the profitability of some rubber based intercrops in smallholdings.

Ontogenetic variations of tree growth and yield of rubber were quantified through *in situ* assessments of related parameters and, simple models were derived to explain timber volume, biomass and carbon content in the rubber tree based on easily measurable growth

indicators such as tree diameter and total height. This information together with market rates/economic values for cost and revenue components of rubber cultivation and three major intercrops: banana, tea and pineapple, is used for financial and economic assessments. The present status of rubber based intercropping systems in the country was assessed through an island wide survey and then, key socio economic factors underpinning the profitability of above mentioned intercrops were identified.

On average, a rubber tree in Wet zone was capable of producing 0.73 m³ of total timber and 0.58 m³ of sawnable timber log volumes, 668 kg of biomass and fixing 274 kg of carbon in 30 years. Corresponding values per hectare were 208 m³, 166 m³, 191 MT and 79 MT, respectively. The resultant values in Intermediate zone were ca. 16% less than those in the Wet zone. As per the guidelines given for forestry based CDM projects, new planting of rubber in Intermediate zone has a potential of trading its CO₂ fixed within the trees. Rubber cultivation only for latex and timber was financially viable (at farmer level) with NPV of Rs.1.66 million, IRR of 22% and BCR of 1.44. According to economic analyses, rubber cultivations were more viable at national level than the farmer level with NPV of Rs.3.9 million, IRR of 34% and BCR of 2.32. Inclusion of carbon values and intercrops increased the financial/economic viability by ca. 6% and ca. 60%, respectively. Potential for reducing the rotational age of rubber cultivation was also assessed. Profitability of both banana and tea intercropping with rubber was governed by the cropping intensity and the total land extent of respective crop. Further, type of employment and educational level of the farmer influenced the profitability of banana whilst scarcity of labour was a determinant of the profitability of tea. Measures to be taken for effective adoption of rubber based intercrops and building up CDM projects are proposed.