HYPOGLYCAEMIC, ANTI-INFLAMMATORY AND ATPASE EFFECT OF THE DRIED FLOWER EXTRACTS OF Aegle marmelos (BAEL FRUIT)

By

Kumaragamage Dona Krishanthi Peshala Kumari

PhD

2014

DECLARATION BY CANDIDATE

The work described in this thesis, was carried out by me under the supervision of Dr. T. Sugandhika Suresh (Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura), Prof. Kamani Samarasinghe (Department of Pathology, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Dr. Shiroma Handunnetti (Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo) and a report on this has not been submitted in whole or in part to any university for another Degree/Diploma.

Posh9.

Date

15-10-2014

Signature of candidate

CERTIFICATION BY SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

)00000600

Dr. T. Sugandhika Suresh

Prof. Kamani Samarasinghe

Dr. Shiroma Handunnetti

CERTIFICATION BY SUPERVISORS

We certify that the candidate has incorporated all corrections, additions and amendments recommended by the examiners.

buggetunon

Dr. T. Sugandhika Suresh

Desection

Prof. Kamani Samarasinghe Dr. Shiroma Handunnetti

Hypoglycaemic, anti-inflammatory and ATPase effect of the dried flower extracts of *Aegle marmelos* (bael fruit)

By

Kumaragamage Dona Krishanthi Peshala Kumari

Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila,

Nugegoda.

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Doctor of Philosophy in Biochemistry on "Hypoglycaemic, anti-inflammatory and ATPase effect of the dried flower extracts of *Aegle marmelos* (bael fruit)".

March 2014

TO MY BELOVED FAMILY

TABLE OF CONTENTS

T	T T
Page	
FAUE	NO.
Lugu	TIO

	I.	LIST OF TABLES	vii
	II.	LIST OF FIGURES	X
	III.	LIST OF PLATES	xii
	IV.	ABBREVIATIONS	xiii
	v.	ACKNOWLEDGEMENTS	XV
	VI.	ABSTRACT	xvii
1.	I	NTRODUCTION	1
	1.	1 The use of medicinal plants	1
	1.	2. Diabetes Mellitus: an overview	2
	1.	3. Inflammation: an overview	4
	1.4	4. Na ⁺ /K ⁺ ATPase	5
	1.	5. Aegle marmelos	7
	1.	6. Scope of the study	11
	1.	7. Objectives	12
2.	L	ITERATURE REVIEW	14
	2.	1 The milestones of the history of diabetes mellitus	14
	2.2	2. Pathophysiology of Diabetes mellitus	16
	2	3. Treatments of diabetes mellitus	18

2.4. Medicinal plants used in DM

i

20

	2.5. The mechanisms of anti-diabetic plants	25
	2.6. The active hypoglycaemic principals in herbs	29
	2.7. Historical Highlights of inflammation	32
	2.8. Pathophysiology of Inflammation	33
	2.9. Treatments for inflammatory diseases	40
	2.10. Herbal treatments to inflammatory diseases	42
2.11.	The mechanisms of anti-inflammatory plants	47
	2.12. Active anti-inflammatory principals in herbs	49
	2.13. General use of Aegle marmelos	53
	2.14. Medicinal properties of Aegle marmelos	56
	2.15. Phyto-chemicals from Aegle marmelos	67

3. METHODOLOGY

3.1	General methods	72
	3.1.1. Ethical considerations	72
	3.1.2. Plant material	72
	3.1.3. Animals	73
	3.1.4. Preparation of extract	73
	3.1.5. Standard drugs	73
	3.1.6. Induction of diabetes	74
	3.1.7. Biochemical analyses	74
3.2	Evaluation of hypoglycaemic activity in Wistar rats	74
	3.2.1. Studies with healthy rats	74
	3.2.2. Studies with diabetic rats	76

72

3.3.	Studies on the mechanisms of the hypoglycaemic effect in	
	Wistar rats	77
3.4.	Evaluation of the toxicity of the long term administration	
	of WEAM in Wistar rats	78
3.5.	Evaluation of oral hypoglycaemic activity of the WEAM	
	in healthy volunteers	79
3.6.	Evaluation of oral hypoglycaemic activity in Type 2	
	diabetic patients	80
3.7.	Evaluation of the anti-inflammatory activity in healthy rats	81
3.8.	Assay of anti-inflammatory effect in diabetic rats	82
3.9.	Studies on the mechanisms of anti-inflammatory activity	
	of WEAM	82
3.10	. Evaluation of the Na^+/K^+ ATPase activity in diabetic rats	87
3.11	. Evaluation of the erythrocyte Na^+/K^+ ATPase activity	
	in healthy volunteers	90
3.12	. Preliminary studies on activity guided fractionation of EEAM	90
	3.12.1. Partitioning of the EEAM	91
	3.12.2. Comparison of the anti-inflammatory effect of	
	the fractions in healthy rats	91
	3.12.3. Comparison of the hypoglycaemic effect of	
	the fractions in healthy rats	91
	3.12.4. Gas Chromatography – Mass Spectrum analysis	
	(GC-MS) of the fractions	92

	3.12.5. Fractionation of Ethyl acetate fraction by	
	gel filtration chromatography	92
	3.12.6. Subfractionation of the Fraction 1 by	
	column chromatography	93
	3.12.7. Subfractionation of the Subfraction 7 by	
	thin layer chromatography	94
	3.12.8. Subfractionation of the Fraction 3 by	
	thin layer chromatography	95
	3.12.9. Phytochemical screening of fractions	96
	3.13. A pilot study on the organoleptic properties of the different	
	preparations of the WEAM	98
	3.14. Statistical analysis	99
4.	RESULTS	100
	4.1 General results	100
	4.2. Results of hypoglycaemic activity in Wistar rats	100
	4.2.1. Studies with healthy rats	100
	4.2.2. Studies with diabetic rats	104
	4.3. Studies on the mechanisms of the hypoglycaemic	
	effect in Wistar rats	108
	4.4. Evaluation of the toxicity of the long term administration	
	of WEAM in Wistar rats	113
	of WEAM in Wistar rats 4.5. Oral hypoglycaemic activity of the WEAM in healthy volunteers	113 119

iv

4.7. Anti-inflammatory effect of WEAM and EEAM in healthy rats	125
4.8. Anti-inflammatory effect of WEAM in diabetic rats	127
4.9. The mechanisms of anti-inflammatory activity of WEAM	129
4.10. The Na ⁺ /K ⁺ ATPase activity in diabetic rats	132
4.11. The erythrocyte Na^+/K^+ ATPase activity in healthy volunteers	133
4.12. The preliminary studies on activity guided fractionation of EEA	135
4.12.1. Partitioning of the EEAM	135
4.12.2. Comparison of the anti-inflammatory effect	
of the fractions in healthy rats	135
4.12.3. Comparison of the hypoglycaemic effect	
of the fractions in healthy rats	137
4.12.4. Gas Chromatography – Mass Spectrum analysis	
(GC-MS) of the fractions	137
4.12.5. Fractionation of ethyl acetate fraction by	
gel filtration chromatography	142
4.12.5. Sub fractionation of the Fraction 1 by column	
Chromatograph	144
4.12.7. Subfractionation of the Subfraction 7 by	
thin layer chromatography	146
4.12.8. Subfractionation of the Fraction 3 by	
thin layer chromatogram	150
4.12.9. Phytochemical screening of fractions	153
4.13. The organoleptic properties of the different preparations	
of the WEAM	156

v

5.	DISCUSSION	161
6.	CONCLUSION	184
7.	REFERENCES	186
8.	APPENDICES	226

LIST OF TABLES

Table 2.1	The most popular plants used in Sri Lankan traditional	
	medicine systems to treat diabetes mellitus	21
Table 2.2	The mechanisms exerted by anti-diabetic plants	26
Table 2.3	The active hypoglycaemic compounds isolated and identified	
	from different herbs	30
Table 2.4	The actions of the principal mediators of inflammation	37
Table 2.5	The herbs used by Sri Lankan practitioners of indigenous	
	medicine to treat inflammatory diseases	43
Table 2.6	Mechanisms underlying the anti-inflammatory effect	
	of different medicinal plants	48
Table 2.7	Anti-inflammatory active compounds from different plant species	50
Table 2.8	Nutritional value of the edible portion of fresh bael fruit	55
Table 2.9	Different types of phytochemical compounds isolated	
	from different plant parts of A. marmelos	68
Table 2.10	Pharmacologically active compounds isolated from	
	various parts of A. marmelos	70
Table 4.1	The effect of water extract of dried flowers of Aegle marmelos	
	(500 mg/kg) on serum glucose concentrations at	
	different time intervals in healthy Wistar rats	103
Table 4.2	The mean serum glucose concentrations of diabetic rats	
	treated with the water extract of dried flowers of	
	A. marmelos (WEAM) for 42 days	106

Table 4.3	Mean serum concentrations of various blood analytes	
	in different groups of rats	114
Table 4.4	Changes in mean body weight, liver weight and	
	liver glycogen content in different groups of rats	118
Table 4.5	Mean values of serum analytes prior to and after	
	consumption of WEAM in healthy volunteers	121
Table 4.6	Mean values of serum analytes prior to and after	
	consumption of WEAM in type 2 diabetic patients	124
Table 4.7	Effect of ethanolic (EEAM) and water (WEAM) extract of	
	dried flowers of A. marmelos on carrageenan induced rat	
	paw oedemain healthy rats	126
Table 4.8	Effect water extract of dried flowers of A. marmelos on	
	Carrageenan induced rat paw oedema in Diabetic rats	128
Table 4.9	Effect of the hexane and ethyl acetate (EAF) fractions on	
	carrageenan induced rat paw oedema in healthy rats	136
Table 4.10	Volatile compounds identified from SPME/GC/MS of	
	ethyl acetate Fraction	139
Table 4.11	Volatile compounds identified from SPME/GC/MS	
	of hexane fraction	141
Table 4.12	Effect of the Fractions 1, 2, 3 and 4 on carrageenan induced	
	rat paw oedema in healthy rats	143
Table 4.13	Effect of the Subfractions 7, 8 and 9 on carrageenan induced	
	rat paw oedema in healthy rats	145

Table 4.14	Effect of the Band 1, 2 and 3 on carrageenan induced	
	rat paw oedema in healthy rats	147
Table 4.15	The detailed analysis of FTIR spectrum of Band 3	149
Table 4.16	The detailed analysis of FTIR spectrum of Band 4	152
Table 4.17	The phytochemical analysis of fractions of ethanolic extract	
	of dried flowers of A. marmelos	154
Table 4.18	The phytochemical analysis of fractions and TLC bands of	
	ethanolic extract of dried flowers of A. marmelos	155
Table 4.19	Details of the scores obtained for black tea and traditionally	
	prepared extract	157
Table 4.20	Details of the scores obtained for black tea and the drink	
	prepared using powered dried flower and commercially	
	available sachet	158

LIST OF FIGURES

Figure 4.1	The dose curve for the water extract of dried flowers	
	of Aegle marmelos (WEAM) in healthy Wistar rats	101
Figure 4.2	The mean serum glucose concentrations of diabetic rats	
	treated with the water extract of dried flowers of	
	A. marmelos (WEAM), methformin and	
	distilled water (Control) for 42 days	107
Figure 4.3	The mean glucose concentration in serum and intestine of the Test	
	and Control groups of rats after 2 h of consumption of glucose	110
Figure 4.4	The mean serum concentration of insulin in the Test and	
	Control groups of rats after 2 h of consumption of glucose	111
Figure 4.5	The mean serum concentration of glucokinase (GK) and glycogen	
	synthase kinase (GSK) of the test and control groups of rats after	
	2 h of consumption of glucose	112
Figure 4.6	Fasting and post glucose load serum glucose	
	concentration of the healthy volunteers prior to and	
	after consumption of the test extract	120
Figure 4.7	Fasting and post glucose load serum glucose	
	concentration of the Type 2 diabetic patients prior to and	
	after consumption of the test extract	123
Figure 4.8	Inhibition of in vitro NO production of rat peritoneal cells by	
	water extract of dried flowers of A. marmelos (WEAM)	131

Figure 4.9	The mean Na+/K+ ATPase concentration of erythrocyte		
	membranes, liver plasma membranes and mucosae of		
	small intestines of the rats in normal control	134	
Figure 4.10	The GCMS spectrum of the ethyl acetate fraction	138	
Figure 4.11	The GCMS spectrum of the hexane fraction	140	
Figure 4.12	The FTIR spectrum of Band 3	148	
Figure 4.13	The FTIR spectrum of Band 4	151	
Figure 4.14	Distribution of the overall score for different preparations of		
	WEAM	159	
Figure 4.15	Percentage of the participants felt a feeling of coolness,		
	muscle relaxation and relieving of stress throughout 30 min		
	after drinking traditionally prepared extract (TPE), powdered		
	dried flowers (PFE), commercially available instant sachets (CIS)		
	and unbranded black tea (TEA)	160	

÷

LIST OF PLATES

Plate 1	Whole tree and leaves of Aegle marmelos	10
Plate 2	Fruit and seeds of Aegle marmelos	10
Plate 3	Fresh and dried flowers of Aegle marmelos	10
Plate 4	Histopathology of Liver tissue; a- Normal control,	
	b- Normal Test	
	115	
Plate 5	Histopathology of heart tissue; a- Normal control,	
	b- Normal Test	115
Plate 6	Histopathology of kidney tissue; a- Normal control,	
	b- Normal Test	115
Plate 7	Histopathology of liver tissue; a- Diabetic control,	
	b- Diabetic test; inflammation	116
Plate 8	Histopathology of liver tissue; a- Diabetic control,	
	b- Diabetic test; Fatty changes	116

ABBREVIATIONS

ABTS	2, 2'-Azino-bis (3- ethylbenzothiazoline-6-sulphonic acid
ALP	Alkaline phosphatase
ALT	Alanine amino transferase
AST	Aspartate amino transferase
ATPase	Adenosine tri phosphatase
CIS	Commercially available instant sachets
COX	Cyclo-oxygenase
DM	Diabetes Mellitus
DPPH	2,2 -Diphenyl-1-picrylhydrazyl
EAF	Ethyl acetate fraction
EC50	Half maximal effective concentration
EEAM	Ethanolic extract of dried flowers of A. marmelos
FTIR	Fourier Transform Infra Red spectroscopy
GCMS	Gas Chromatography – Mass Spectrum
GK	Glucose kinase
GLUT	Glucose transporter
GSK	Glucose synthase kinase
γ-GT	Gamma glutamyl transferase
Hb	Haemoglobin
HbA1C	Glycated haemoglobin
HDL	High density lipoprotein
HF	Hexane fraction
IC50	Half maximal inhibitory concentration

LD50	50 % concentration of the lethal dose 50
LDL	Low density lipoprotein
OGTT	Oral glucose tolerance test
NMMA	N-monomethyl-L-arginine acetate salt
NO	Nitric oxide
NSAID	Non steroidal anti-inflammatory drugs
PBS	Phosphate buffered saline
PFE	Powdered dried- flower extract
Rf	Retention factor
T1DM	Type 1 Diabetes Mellitus
T2DM	Type 2 Diabetes Mellitus
TEAC	Trolox equivalent anti-oxidant capacity
TLC	Thin layer chromatography
TPE	Traditionally prepared extract
UV	Ultra violet
WEAM	Water extract of dried flowers of A. marmelos

ACKNOWLEDGEMENTS

I take this opportunity to express my endless gratitude and indebtedness to my supervisor Dr. Sugandhika Suresh (Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) for the invaluable guidance, encouragement and advice she has provided throughout my study. I have been extremely lucky to have a supervisor who gave a strong moral support whenever needed and she was always behind me at the every stage of my Ph. D work. This is a goal in my life which I could not have achieved without her tremendous support.

I also express my heartfelt gratitude towards my co-supervisors Prof. Kamani Samarasinghe (Department of Pathology, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Dr. Shiroma Handunnetti (Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo) for their valuable supervision, encouragement and suggestions given throughout my research project.

My sincere gratitude goes to University of Sri Jayewardenepura for providing me the financial support for my research work through the grants ASP/R/06/2010 and WCUP/PHD/03/12 given to Dr. Sugandhika Suresh.

I am grateful to all the academic and nonacademic staff of Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura and Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo for the support given to me in many ways during my experiments.

I am very much thankful to Mr. Sirisena and Mr. Manjula of Animal House, Faculty of Medical Sciences, University of Sri Jayewardenepura for their kind assistance given during animal studies. I also wish to thank Dr. M. Thammitiyagoda and her staff at Medical Research Institute, Colombo 8, for their tremendous support during the animal studies.

My special thanks go to all my research colleagues Banukie, Swarna, Subashini, Saroja, Varthani, Samantha, Kasuni and Asanga for their constant support given in many ways. My special thanks go to the research colleagues Urashani, Chathurika, Durga and Dushantha akka at Postgraduate Research Laboratory, Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura for their heartfelt help during my experiments.

I take this opportunity to thank all the participants of my human studies for their patience and support given.

I am deeply acknowledging Mrs. Amitha and Ms. Champika (Family Practice Center, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Mr. Darshana (Medical Laboratory Science Degree Programme, Faculty of Medical Sciences, University of Sri Jayewardenepura) for helping me to draw blood during studies with healthy volunteers and patients.

Finally I would like to express my deep indebtedness to my parents, husband and son for their sacrifice and great moral support given to me during this difficult task.

Hypoglycaemic, anti-inflammatory and ATPase effect of the dried flower extracts of *Aegle marmelos* (bael fruit)

By Kumaragamage Dona Krishanthi Peshala Kumari

ABSTRACT

Aegle marmelos Correa (L.) is a highly reputed medicinal plant used in the traditional medicine systems of Asian countries and possesses many medicinal properties. Although many parts of this plant have been extensively investigated, there is no experimental evidence on the flower extracts of the plant. The drink made by boiling the dried flowers of *A. marmeols* is popular in Sri Lanka. The objectives of the present study were to evaluate the hypoglycaemic, anti-inflammatory and ATPase effect of the flower extracts of this plant.

The oral hypoglycaemic effect of the water extract of dried flowers of *A. marmelos* (WEAM) was evaluated in healthy and alloxan induced diabetic Wistar rats. Time course and dose curve were studied in healthy rats. The optimum dose was 500 mg/kg (p < 0.001), which gave the highest reduction of post glucose load serum glucose concentration (30 %) at 2 h after the administration of glucose. Administration of multiple doses of WEAM in both healthy and diabetic rats showed a gradual reduction of the fasting and post glucose load serum glucose concentrations. In diabetic rats following a 42 day consecutive administration of the test extract, there was a 40 % (p < 0.01) reduction in fasting serum glucose concentration. The level of HbA1c (p < 0.01) was also reduced significantly in comparison to the control. The effectiveness

of the WEAM was comparable with the reference drugs metformin and glibenclamide in both healthy and diabetic rats. To evaluate the hypoglycaemic mechanisms of WEAM (500 mg/kg) in diabetic rats; the intestinal glucose content, liver glycogen content, serum glycogen synthase kinase, serum glucokinase and serum insulin levels were estimated. The glucose concentration of the intestinal content of the Test group was significantly reduced (P < 0.05) by 33 % compared to the Control group. Serum concentration of insulin increased significantly (P < 0.05) by 55.1 % in the Test group. Among the enzymes tested, serum concentration of glucokinase increased significantly (P < 0.001) by 50.7 % and there was a significant reduction (P < 0.05, 20 %) in serum glycogen synthase kinase level in the Test group. The glycogen content of the livers of Test rats increased by 64 % (P< 0.05) after long term feeding of the test extract.

To evaluate possible toxicity, the rats received a single dose (500 mg/kg) of the Test extract for 42 consecutive days. There was no statistically significant (P > 0.05) difference between concentrations of serum ALT, AST, ALP, γ - GT, creatinine and Hb levels of Test group compared to the Control group. No histopathological changes were observed in liver, heart and kidney tissues of Control and Test groups and this suggested that the WEAM does not exert any possible adverse effects on organs. The alterations of blood parameters and histopathology in diabetic rats were reversed by the long term administration of the test extract.

To evaluate the hypoglycaemic effect in healthy volunteers (n = 30) and Type 2 diabetic patients (n =30), the WEAM (85 mg/kg) was given continuously for 14 days and fasting and post glucose load serum glucose concentrations were measured. The individuals were monitored afterwards and serum ALT, AST, ALP, γ - GT, creatinine and Hb levels were measured. In healthy subjects the fasting serum glucose concentration was reduced

by 6 % (P < 0.001) while, the post glucose load serum glucose concentration was reduced by 20 % (P < 0.001) after 14 days. In diabetic patients, following consumption of the test extract for 14 days, the fasting serum glucose concentration was reduced by 20.0 % (P < 0.001) and the post glucose load serum glucose concentration was reduced by 35.5 % (P < 0.001). No adverse effects were reported during and after the experiment and the serum levels of tested liver enzymes, creatinine and Hb were not significantly (P > 0.05) altered in human subjects after the treatment of test extract.

Anti-inflammatory effect of the test extract was determined by evaluating the percent inhibition of rat paw oedema, induced by carrageenan in healthy and diabetic rats. The maximum percentage inhibition of paw oedema (69.9 %) was shown by the dose of 200 mg/kg at 2 h and the activity was comparable to that of indomethacin. The anti-inflammatory effect was exerted through multiple mechanisms including the inhibition of nitric oxide production, anti-histamine effect, membrane stabilization activity and the high antioxidant capacity of the WEAM.

The effect of the test extract on Na⁺/K⁺ ATPase activity in small intestine, liver and erythrocytes were tested in normal and diabetic rats. The Na⁺/K⁺ ATPase activity in the erythrocytes and liver were significantly lower (P < 0.001) in diabetic rats compared to normal rats. It was significantly higher (P < 0.001) in both tissues of diabetic rats following administration of a single dose of the test extract. The Na⁺/K⁺ ATPase activity in the small intestine was significantly higher (P <0.01) in diabetic rats compared to normal rats and it was further increased significantly (P <0.01) by 24.4 % after administration of the test extract. The pathological alterations of Na⁺/K⁺ ATPase activity in tissues during diabetes appeared to have been reversed by the test extract. In humans, erythrocyte Na⁺/K⁺ ATPase is a peripheral marker that reflects the activity of this enzyme in neurons. Following consumption of the test extract, Na^+/K^+ ATPase activity in erythrocyte membranes in human volunteers was significantly (P < 0.001) increased by 63 % and it provides potential evidence for the stimulatory effect exerted by test extract.

The ethanol extract of flowers was subjected to activity guided fractionation using gel filtration chromatography, column chromatography and thin layer chromatography. The separated fractions were tested for hypoglycaemic and anti-inflammatory effect in rats. Fourier Transform Infra Red (FTIR) spectra were taken for the most active fractions and the active hypoglycaemic fraction comprised a mixture of flavonoids and coumarins and active anti-inflammatory fraction composed of triterpenoids.

Different preparations of the WEAM and black tea were given to 30 volunteers and a questionnaire was used for sensory evaluation. The traditionally prepared *beli mal* drink had appreciable organoleptic properties which are comparable to that of black tea. However the properties of the extract prepared by the powdered dried flowers and commercially available instant sachets were poor in comparison to that of tea or the traditionally prepared drink.

As hypoglycaemic and anti-inflammatory effects are scientifically proven by this pioneer study, this beverage can be promoted as a health drink among the population.