IDENTIFICATION OF PREFERRED LOCATIONS FOR TELECOMMUNICATION TOWERS FOR AN ANTENNA STRUCTURE FARM NETWORK

L.C. Nanayakkara

M.Sc.

2014

DECLARATION OF THE CANDIDATE

The work described in this thesis was carried out by me under the supervision of Prof. CKM Deheragoda, Department of Geography, University of Sri Jayewardenepura and Mr. HMP Jayantha, Teaching Faculty Member of the M.Sc. Degree in GIS and Remote Sensing, Department of Geography, University of Sri Jayewardenepura and confirm that this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

Signature of Candidate

.

2014.06.15

Date

DECLARATION OF SUPERVISOR

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

 \subset

Signature of Senior Supervisor Prof. CKM Deheragoda

10/08/2014

Date

10/09/2014

Signature of Co-Supervisor HMP Jayantha

Date

IDENTIFICATION OF PREFERRED LOCATIONS FOR TELECOMMUNICATION TOWERS FOR AN ANTENNA STRUCTURE FARM NETWORK

L.C. NANAYAKKARA MSC/GR/2012021

Thesis submitted to the University of Sri Jayewardenepura for award of the Degree of Master of Science in Geographic Information Systems and Remote Sensing on Sunday, June 15, 2014.

DEDICATTION

Like a Shadow

Who were always with me

At my sad moments

And

At my happy moments

Who laughed And

Cried with me

A Father like a king

And

A mother like a queen

I dedicate this to them

ii

TABLE OF CONTENT

PAGES

LIST OF FIGURES	vi
LIST OF TABLES	viii
LIST OF APPENDICES	viii
LIST OF ACRONYMS	ix
ACKNOWLEDGEMENTS	x
ABSTRACT	xi
CHAPTER 1 : INTRODUCTION	1
1.0 BACKGROUND	1
1.1 SIGNIFICANCE OF RESEARCH	6
1.2 PROBLEM IDENTIFICATION	10
1.3 OBJECTIVES	11
1.4 SCOPE AND LIMITATIONS	11
1.5 CHAPTERIZATION	12
CHAPTER 2 : LITERATURE REVIEW	13
CHAPTER 3 : METHODOLOGY	35
3.0 SUMMARY OF METHDOLOGY	35
3.1 STUDY AREA	37
3.2 DATA COLLECTION	37
3.2.1 Primary Data	37
3.2.2 Secondary Data	38
3.3 DATA PREPARATION	39
3.3.1 Conversion of CAD Data for Shape File format	39
3.3.2 Importing Data to Geodatabase (GeoDB) and Its Structure	39

	3.3.3 Adding One Kilometer (1 Km) Addition Area around Perimeter of Study Area	41
	3.3.4 Conversion of Population Tabular Data for Meaningful Vector Format	41
	3.5 FLOW CHART OF PROCESSING STAGE	43
	3.6 CONVERSION OF MAIN CRITERIA DATA FOR RASTER FORMAT A RECLASSIFY	ND 44
	3.7 DEFINING WEIGHTS AND SCALE VALUES	44
	3.7.1 Main Criteria's Weights Defining	45
	3.8 SELECTING SUITABLE AREA	46
	3.9 DEFINE VALUE FOR TECHNICAL PARAMETERS FOR ANTEN STRUCTURE (TOWER)	INA 47
	3.10 CREATING PYTHON SCRIPT & MODEL TOOLS.	48
	3.10.1 Creating Python Script tools	48
	3.10.2 Creating Model tools	49
	3.11 CREATING ANTENNA STRUCTURE FREQUENCY REUSING NETWORK	49
	3.12 CREATING ANTENNA STRUCTURE FARM NETWORK	50
	3.13 CREATING ANTENNA STRUCTURE NETWORK FOR STUDY AREA	52
	3.14 VIEWSHED OF DESIGN ANTENNA STRUCTURE NETWORK AND EXIST	ING
	CELL SITE NETWORK	52
	3.15 MODEL BUILDER	53
C	CHAPTER 4 : RESULTS, ANALYSIS AND DISCUSSION	55
	4.0 WEIGHTED OVERLAY MODEL	55
	4.0.1 Main Criteria Data for Raster format and Reclassification	56
	4.0.2 Weight and Scale values for Main Criteria's and Sub Criteria's	64
	4.0.3 Area Selection	66
	4.1 COVERAGE TECHNICALPARAMETRSFOR AN ANTENNASTRUCRTURE	69
	4.2 PYTHON SCRIPT AND MODEL TOOLS	70
	4.2.1 Python Script Tools	70

4.2.2 Model tools	74
4.3 ANTENNA STURACTURE FARMNETWORK (ASFN)	76
4.3.1 Antenna Structure Network	77
4.4 COMBINED MODEL TOOL AND VIEWSHED	78
4.4.1 Combined Model Tool	78
4.4.2 Viewshed of Design Antenna Structure Network and Existing Cell	Site Network 79
CHAPTER 5 : CONCLUSIONS AND RECOMMENDATIONS	82
5.0 CONCLUSIONS	82
5.2 RECOMMENDATIONS	82
RECOMMENDATION 1	82
RECOMMENDATION 3	83
RECOMMENDATION 4	83

REFERENCE

84

LIST OF FIGURES

Figure 1.0 GSM vs CDMA	2
Figure 1.1 Provincial Distributions of Fixed Phones (Sept.2006)	3
Figure 1.2 Growth of fixed and mobile subscribers (2000-2006)	4
Figure 1.3 Fixed, mobile and total Teledensity (2000 -2006)	5
Figure 2.0 System components of the mobile network	13
Figure 2.1 Cluster	14
Figure 2.2 Radio Base Station	14
Figure 2.3 Horizontal beam width of the Directional antenna	16
Figure 2.4 Three sectorization	16
Figure 2.5 Omni Directional antenna coverage	17
Figure 2.6 Comparison between Omni Directional & Directional antenna coverage	18
Figure 2.7 Mechanical down tilt Directional antenna	19
Figure 2.8 Microwave back haul antenna	19
Figure 2.9 Frequency reusing between cell sites	21
Figure 2.10 Frequency reusing between clusters	22
Figure 2.11 Viewshed of existing towers on Balangoda DS Division	26
Figure 2.12 Vector format network of antenna structure farm and Viewshed of design towe	ers on
Balangoda DS Division	27
Figure 2.13 Alteration to antenna structure	32
Figure 2.14 Lattice Tower	33
Figure 2.15 Monopole Tower	33
Figure 2.16 Guyed Tower	34
Figure 2.17 Stealth Tower	34
Figure 3.0 Graphical Illustration of the Methodology Followed in the Entire Study	36
Figure 3.1 Balangoda DS Division	37
Figure 3.2 Geodatabase and Its Structure	40
Figure 3.3 The Methodology Followed in one Kilometer buffer for study area creation	41
Figure 3.4 The Methodology Followed in GND's population centers creation	42
Figure 3.5 Graphical Illustration of the Processing Stage Methodology	43
Figure 3.6 Graphical Illustration of the AHP Multi Criteria Decision Making Model	45
Figure 3.7 The Methodology Followed in Multi-Criteria Weighted Overlay Analysis	46
Figure 3.8 Graphical Illustration of the Thiessen Input points	49
Figure 3.9 The Methodology Followed in Creating Antenna Structure Farm network	51
Figure 3.10 Controlling view sheds characteristics	52
Figure 3.11 Observation point height view sheds characteristic	53

Figure 3.12observation point coverage view sheds characteristic	53
Figure 4.0 Graphical Illustration of the Suitability scale	56
Figure 4.1 Building Reclassified Euclidean Distance Raster	58
Figure 4.2 Road Reclassified Euclidean Distance Raster	60
Figure 4.3 Distribution of Population by Grama Niladhari Division	61
Figure 4.4 Reclassified Population Distribution Raster	62
Figure 4.5 Reclassified DEM Raster	63
Figure 4.6 Suitable Area Raster	69
Figure 4.7 GSM Horizontal Coverage Calculation Script Tool Interface	71
Figure 4.8 GSM Horizontal Coverage Calculation Script Tool on Model Builder Environment	71
Figure 4.9 Make Thiessen Inputs Script Tool Interface	72
Figure 4.10 Single point creation Script Tool Interface	73
Figure 4.11 Output of Single point creation Tool and Make Thiessen Inputs Tool	74
Figure 4.12 Create Frequency reusing Hexagon Network Tool Output	75
Figure 4.13 Selecting Rough Antenna Structure Farm Location	76
Figure 4.14 Antenna Structure Farm Location Network	77
Figure 4.15 Antenna Structure Network	78
Figure 4.16 Viewshed of Design Antenna Structure Network	79
Figure 4.17 Viewshed of Existing Antenna Structure Network	80

LIST OF TABLES

Table 3.0 Summary of Data	38
Table 4.0 Earthing Arrangement of an Antenna Structure less than and equal to 100 m 5	57
Table 4.1 Earthing Arrangement of an Antenna Structure higher than 100 m	57
Table 4.2 Reclassification table for Road Euclidean distance raster	58
Table 4.3 Reclassification table of Road Euclidean distance raster	59
Table 4.4 Reclassification Table of Population Distribution Raster	51
Table 4.5 Reclassification Table of DEM Raster	53
Table 4.6 AHP Technique based Comparison value scale of Main Criteria's	54
Table 4.7 Pair-wise Matrix for Main Criteria's	55
Table 4.8 Normalized relative weight matrix for Main Criteria's	55
Table 4.9 Priority weight matrix for Main Criteria's	55
Table 4.10 Weighted Overlay tool based Road Euclidean Distance Reclassified Raster	57
Table 4.11 Weighted Overlay tool based DEM Reclassified Raster	57
Table 4.12 Weighted Overlay tool based Population Distribution Reclassified Raster	57
Table 4.13 Weighted Overlay tool based Building Reclassified Raster	58
Table 4.14 Weighted Overlay tool based for Land Use raster	58
Table 4.15 GSM Horizontal Coverage Calculation Tool Output Attribute Table	72
Table 4.16 Design Antenna Structure Farm location network attribute table	79
Table 4.17 Existing network attribute table 8	81

LIST OF APPENDICES

APPENDIX-I	
APPENDIX-II	
APPENDIX-III	
APPENDIX-IV	
APPENDIX-V	
APPENDIX VI	
APPENDIX VII	
APPENDIX VIII	
APPENDIX-IX	
APPENDIX-X	
APPENDIX-XI	
APPENDIX-XII	
APPENDIX-XIII	

LIST OF ACRONYMS

GSM	- Global System for Mobile
MU	-Mobile Unit
RBS	-Radio Base Station
MTSO	-Mobile Telephone Switching Office
PSTN	-Public Switched Telephone Network
MSC	-Mobile Switching Center
TRCSL	-Telecommunications Regulatory Commission of Sri Lanka
MOU	-Minutes of Use
TISP	-Telecommunication Infrastructure Service Provider
TSP	-Telecommunication Service Provider
CAASC	-Civil Aviation Authority of Sri Lanka
UDA	-Urban Development Authority
MOD	-Ministry Of Defense
PS	-Pradheshiya Sabha
ICNIRP	-International Commission on Non Ionizing Radiation Protection
CEA	-Central Environmental Authority
AC	-ACquisition agent
TAC	-Technical Advisory Committee

ACKNOWLEDGEMENTS

Foremost, I would like to express my gratitude to all those who have given me their full support in making this research a success.

First I offer my sincere gratitude to Rev. Dr. Pinnawala Sangasumana, Coordinator of Postgraduate Degree in Remote Sensing and GIS, Faculty of Graduate Studies, University of Sri Jayewardenepura.

I wish to express a sense of gratitude to my research Senior Supervisor, Professor C.K.M. Deheragoda, has been always there to listen and give advice. I am also thankful to him for encouraging the use of correct grammar and consistent notation in my writings and for carefully reading and commenting on countless revisions of this manuscript.

I owe my deepest gratitude to my research Co-Supervisor Lecturer HMP Jayantha, for his guidance and support given to me throughout my research with his patience, motivation, enthusiasm and immense knowledge. I am deeply grateful to him for the long discussions that helped me sort out the technical details of my work.

Besides my supervisors, I would like to thank the rest Lecturers who laid foundation for this research during my study period.

My sincere thanks also go to fellow mates in M.sc degree program for giving valuable ideas to finish my research.

Last but not the least; I would like to thank my family: parents for giving birth to me at the first place and supporting me spiritually throughout my life and my wife for encouragement and support for finish this.

ABSTRACT

Mobile telecommunication plays an important role in modern human society. Therefore, it needs a effective tower network to satisfy all the human Mobile telecommunication requirements. Also these tower networks should be established under the rules and a regulation enacted varies authorities. The Telecommunications Regulatory Commission of Sri Lanka (TRCSL) is responsible for creating national policies in mobile telecommunication using all the rules and regulations enacted by various authorities in mobile communication sector. Even though these institutions have been introduced rules and regulations for the safe of public and infrastructure, the most of the Telecommunication Service Providers (TSPs) are violating these policies by giving various reasons to the TRCSL to achieve their personal goals. Because of that, various problems are occurred, such as electromagnetic emission fear among the neighboring people, lightening damage and environment problems. From above mentioned problems the lightening damage directly violated severely by the TSPs. Other problems are directly controlled by the TRCSL or Central Environment Authority or Pradeshiya Saba etc.

Main objective of the research is to select suitable areas for antenna structures that satisfy national policies and using these areas creating antenna structures farm network for the study area (Balangoda DS division) using Geographical Information System (GIS). Also it should be connected to existing tower of the TSPs. To meet the above objectives, technical parameters were fixed using literature review and personal communications, also using semi-structural questioner and spatial analysis process in ArcGIS 10.1 software Model Builder suitable areas and script and model tools which are generated by using pythonWin2.7.2 software for creating Antenna Structure Farm Network. Using design network and existing tower network view sheds were created. Sub urban and urban areas are precisely covered by the design network viewshed rather than existing tower viewshed. Finally combined model tool was created for entire study, which can be reuse by changing the input data.

Chapter 1

INTRODUCTION

1.0 BACKGROUND

Telecommunication has become one of the most important parts of today's human lives. From Alexander Graham bell's simple wire telephone to complex Satellite Telephone, Telecommunication has developed rapidly. The word telecommunication was adapted from French. It is a compound of the Greek prefix tele- (τηλε-), meaning "distant", and the Latin communicare, meaning "to share". The French word télécommunication was first invented in the French "Telecom Paris Tech" in 1904 by the French engineer and novelist Édouard Estaunié. Telecommunication is communication at a distance by technological means, particularly through electrical signals or electromagnetic waves. The concept has been around since the early days of human history, when smoke signals and drums were used to inform a person or groups of people of an event or situation especially in Africa, the Americas and parts of Asia. Pre-modern telecommunication included visual signals, such as beacons, smoke signals, signal flags and Optical telegraphs were commonly used in 1790's on Europe. An experiment on communication with electricity was started from 1726's. Practical electrical telegraph was proposed in 1837's. The conventional telephone now in use worldwide was first patented by Alexander Graham Bell in 1876, from than development of telecommunication industry accelerated. One of the most prevalent telecommunications devices is the telephone, an instrument that transfers vocal information from place to place. Two main types of phones are used in modern society, the analog-based, fixedline telephone and the satellite-based, cellular phone. Cellular technology was first implemented in the 1970's using a network of satellites and radio towers. Varies technologies can be seen on Cellular technology. (William & Bill's, 2010)

But there are two main competitive technologies can be seen.

01. GSM (1st Generation-1G, 2nd Generation-2G, 3rd Generation-3G).

02. CDMA (Code Division Multiple Access).

1