Incidence of antisperm antibodies and its association to subfertility in couples undergoing assisted reproductive technologies, at a selected centre.

By

Varuni Tennakoon

M. Phil

2010
Incidence of antisperm antibodies and its association to subfertility in couples undergoing assisted reproductive technologies, at a selected centre.

By

Varuni Tennakoon

Thesis submitted to the University of Sri Jayawardeneepura for the award of the Degree of Master of Philosophy in Immunology on 31st December, 2010
I certify that the candidate has incorporated all corrections, amendments and additions recommended by the examiners.

Prof. Surangi G Yasawardene
Head, Department of Anatomy
Faculty of Medical Sciences
University of Sri Jayewardenepura
Declaration

The work described in this thesis was carried out by me under the supervision of,

Professor Surangi Gayaneetha Yasawardene
Professor of Anatomy

Doctor Deepal Senaka Weerasekera
Consultant Obstetrician and Gynaecologist

Doctor James William Catt
Consultant Embryologist

A report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

Varuni Tennakoon

Date 30.12.2010
We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University of Sri Jayawardenepura for the purpose of evaluation.

Prof. Surangi G Yasawardene

Dr. Deepal S Weerasekera

Dr. James W Catt
Dedicated to my parents,
My husband Chamil and my two sons
Dinu and Mithu
List of Contents

List of contents i
List of tables viii
List of figures xi
List of plates xii
Abbreviations xiii
Acknowledgements xv
Abstract xvi

1. INTRODUCTION 1

2. LITERATURE REVIEW 5

2.1 Historical perspective 5

2.2 Spermatogenesis 7

2.3 Sperm antigens 8

2.4 Antisperm antibodies 9

2.5 Aetiology of antisperm antibody formation 11

2.5.1 Immuno-protective mechanisms in male 11

2.5.2 Development of antisperm antibody in male 13

2.5.2.1 Breach of blood testis barrier 13

2.5.2.2 Infection of the genital tract 14

2.5.2.3 Reduced immunosuppressive activity 15

2.5.3 Immuno-protective mechanisms in female 15

2.5.4 Development of antisperm antibody in females 16
2.5.4.1 Damage to mucosal layer of the genital tract
2.5.4.2 Immunological factors
2.5.4.3 Deposition of semen at sites other than vagina

2.6 Effects of Antisperm antibodies

2.6.1 Effects on semen quality
2.6.2 Interference with cervical mucus penetration
2.6.3 Effects on fertilization
2.6.4 Effects of the type and location of antisperm antibody on fertility impairment
2.6.5 Complement-mediated cytotoxicity and opsonizing effect through the female genital tract
2.6.6 Effects of antisperm antibody on capacitation and the acrosome reaction and oocyte fusion
2.6.7 Post fertilization effects

2.7 Current research on defining the antigenic specificity of antisperm antibody

2.8 Methods of detection of antisperm antibodies

2.8.1 Immunobead test (IBT)
2.8.2 Mixed antiglobulin reaction (MAR)
2.8.3 Enzyme linked immunosorbent assay (ELISA)
2.8.4 Tray agglutination test (TAT) and Sperm immobilizing assay (SIT)
2.8.5 Flow cytometry (FCM) and radio-labelled agglutinin assay
2.9 Treatment options

2.9.1 Immunosuppressive therapies

2.9.2 Laboratory techniques

2.9.3 Assisted reproductive technologies (ART)

2.10 Description of Intra Uterine Insemination (IUI), In-vitro Fertilization (IVF) and Intra-cytoplasmic sperm injection (ICSI)

2.10.1 Intra Uterine Insemination (IUI)

2.10.2 In-vitro Fertilization (IVF)

2.10.3 Intra-cytoplasmic sperm injection (ICSI)

2.11 Prevalence of antisperm antibody and immune subfertility

2.12 Clinical significance

2.13 Objectives

3. MATERIALS AND METHODS

3.1 Study Design

3.2 Sample size

3.3 Sample selection

3.3.1 Exclusion criteria

3.4 Description of the study

3.4.1 Information from questionnaire

3.4.2 Examination

3.4.3 Investigations

3.5 Sample collection
3.6 Mixed Antiglobulin Reaction (MAR) of sperms

3.6.1 SpermMAR test
3.6.1.1 Kit Contents
3.6.1.2 Direct SpermMAR test
3.6.1.3 Indirect SpermMAR test

3.7 ART procedures
3.7.1 IUI procedure
3.7.2 IVF-ET procedure

3.8 Methods of fertilization
3.8.1 Standard IVF
3.8.2 ICSI

3.9 Equations calculated for analysis of data
3.9.1 Fertilization rate
3.9.2 Cleavage rate
3.9.3 Pregnancy rate
3.9.4 Miscarriage rate

3.10 Quality control
3.11 Analysis of data

4. RESULTS

4.1 Incidence of antisperm antibodies
4.2 Demographic details of the couple
4.2.1 Age
4.2.2 Duration of marriage and duration of subfertility 63
4.2.3 Occupation 66

4.3 Type of subfertility 66

4.4 Causes for formation of antisperm antibodies 70
4.4.1 Male causes 70
 4.4.1.1 Associated genito-urinary conditions 70
 4.4.1.2 Associated autoimmune conditions and illnesses 70
 4.4.1.3 Use of addictables 72
4.4.2 Female causes 72

4.5 Distribution of antisperm antibodies in males and females 76
4.5.1 Distribution of immunoglobulin (Ig) types of antisperm antibodies in males and females 76
4.5.2 Pattern of localization of antisperm antibodies in males and females 80

4.6 Effects of antisperm antibodies 81
4.6.1 Effects of ASA on fertilization and cleavage of embryos 81
 4.6.1.1 Effects of ASA (irrespective of type and location) on fertilization and cleavage of embryos 81
 4.6.1.2 Effects of type of ASA on fertilization and cleavage of embryos 84
 4.6.1.3 Effects of location of ASA on fertilization and cleavage of embryos 87
4.6.2 Effects of antisperm antibodies on clinical pregnancy rate 90
4.6.2.1 Effects of ASA (irrespective of type and location) on clinical pregnancy rate in different ART procedures 90

4.6.2.2 Effects of type of ASA on clinical pregnancy rate 91

4.6.2.3 Effects of location of ASA on spermatozoa, on clinical pregnancy rate 91

4.6.3 Effects of ASA on pregnancy losses (miscarriage rate) 93

5. DISCUSSION 94

6. CONCLUSIONS 115

7. REFERENCES 117

8. APPENDICES 141

Appendix 1 – Journal Publications and Communications 141

Appendix 2 – Ethical Clearance 145

Appendix 3 – Questionnaire 146

Appendix 4 – Consent form 147

Appendix 5a – Embryo culture mediums 148

Appendix 5b – Sperm rinse medium 149

Appendix 6 – Veeks classification of embryo grading 150

Appendix 7a – Selection criteria for performing IUI and IVF 151

Appendix 7b – Selection criteria for performing standard IVF, ICSI and IVF/ICSI split 152

Appendix 8 – Sperm Mar test; manufacturer instructions 153

Appendix 9 – Standard protocol for controlled ovarian stimulation 154

Appendix 10 – Density Gradient method for sperm preparation for IUI 155
List of tables

Table 2 Several studies of patients with ASA who underwent in-vitro fertilization treatment and the relationship of their ASA to treatment outcome 22

Table 4.1 Age distribution and pattern of ASA distribution in relation to the age of females and males in the total study population 62

Table 4.2 The distribution of ASA with the duration of marriage 64

Table 4.3 The distribution of ASA with the duration of subfertility 65

Table 4.4 The occupational categories and the corresponding occupations 67

Table 4.5 Pattern of distribution of ASA in different occupational categories in males and females 68

Table 4.6 Incidence of ASA among Primary and secondary subfertile couples 69

Table 4.7 Incidence of ASA with or without a history of genital surgery 71
Table 4.8 Incidence of ASA with childhood mumps, co-morbid illnesses and use of addictables (alcohol and cigarette)
74

Table 4.9 Incidence of ASA with previous intra uterine insemination (IUI), pelvic inflammatory disease (PID), termination of pregnancy, autoimmune diseases and co-morbid illnesses in females
75

Table 4.10 Gross data of the distribution of Ig types of antisperm antibodies in different body fluids in the total study sample
78

Table 4.11a Distribution of Ig types of antisperm antibodies in different body fluids in males and females (tabulated data)
79

Table 4.11b Distribution of Ig types of antisperm antibodies in different components of semen (tabulated data)
79

Table 4.12 Pattern of localization of antisperm antibodies on spermatozoa in relation to the Ig type of ASA in males and females
82

Table 4.13a Insemination, fertilization and cleavage of oocytes in standard IVF, ICSI and as a total among ASA positives and ASA negatives
85
Table 4.13b Fertilization rates and cleavage rates of embryos among ASA negativess and ASA positives

Table 4.14a Insemination, fertilization and cleavage of oocytes corresponding To type of ASA in standard IVF, ICSI and as a total among ASA positivess

Table 4.14b Immunoglobulin (Ig) isotype of ASA and corresponding Fertilization rates and cleavage rates of embryos

Table 4.15a Insemination, fertilization and cleavage of oocytes corresponding to the location of ASA in standard IVF, ICSI and as a total among ASA positivess

Table 4.15b Location of ASA on spermatozoa and corresponding fertilization rate and cleavage rate of embryos

Table 4.16 Occurrence of clinical pregnancies with the type of ASA and location of ASA on spermatozoa
Figure 4.1	Incidence, distribution of immunoglobulin (Ig) isotypes and locations of ASA among subfertile couples	61
Figure 4.2a	Incidence of ASA with the age of females	62
Figure 4.2b	Incidence of ASA with the age of males	62
Figure 4.3	The distribution of ASA with the duration of marriage	64
Figure 4.4	The distribution of ASA with the duration of subfertility	65
Figure 4.5a	Pattern of distribution of ASA in different occupational categories in males	68
Figure 4.5b	Pattern of distribution of ASA in different occupational categories in females	68
Figure 4.6	Incidence of ASA among Primary and secondary subfertile couples	69
Figure 4.7	Incidence of ASA with or without a history of genital surgery	71
Figure 4.8	Flow chart of total number of couples that underwent different treatment procedures, their ASA status and pregnancy outcome	83
List of plates

<table>
<thead>
<tr>
<th>Plate 2.1</th>
<th>IVF</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 2.2</td>
<td>ICSI</td>
<td>38</td>
</tr>
<tr>
<td>Plate 3.1</td>
<td>Day 0 oocyte</td>
<td>54</td>
</tr>
<tr>
<td>Plate 3.2</td>
<td>Day 01 embryo</td>
<td>54</td>
</tr>
<tr>
<td>Plate 3.3</td>
<td>Day 03 embryo</td>
<td>55</td>
</tr>
<tr>
<td>Plate 4.1</td>
<td>Negative spermMAR test</td>
<td>59</td>
</tr>
<tr>
<td>Plate 4.2</td>
<td>Positive spermMAR test</td>
<td>60</td>
</tr>
<tr>
<td>Plate 4.3</td>
<td>Head bound ASA</td>
<td>80</td>
</tr>
<tr>
<td>Plate 4.4</td>
<td>Tail bound ASA</td>
<td>80</td>
</tr>
<tr>
<td>Plate 4.5</td>
<td>Midpiece + tail bound ASA</td>
<td>80</td>
</tr>
</tbody>
</table>
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART</td>
<td>Assisted reproductive technologies</td>
</tr>
<tr>
<td>ASA</td>
<td>Antisperm antibodies</td>
</tr>
<tr>
<td>Chi-sq</td>
<td>Chisquare</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetres</td>
</tr>
<tr>
<td>CR</td>
<td>Cleavage rate</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>ESHRE</td>
<td>European society for human reproduction and embryology</td>
</tr>
<tr>
<td>ET</td>
<td>Embryo transfer</td>
</tr>
<tr>
<td>Fc</td>
<td>Fragment crystalizable</td>
</tr>
<tr>
<td>FCM</td>
<td>Flow cytometry</td>
</tr>
<tr>
<td>FR</td>
<td>Fertilization rate</td>
</tr>
<tr>
<td>FSH</td>
<td>Follicular stimulating hormone</td>
</tr>
<tr>
<td>GnRH</td>
<td>Gonadotrophin releasing hormone</td>
</tr>
<tr>
<td>hCG</td>
<td>Human choriogonadotrophin</td>
</tr>
<tr>
<td>IBT</td>
<td>Immunobead test</td>
</tr>
<tr>
<td>ICSI</td>
<td>Intracytoplasmic sperm injection</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>i-IBT</td>
<td>Indirect immunobead test</td>
</tr>
<tr>
<td>IU</td>
<td>International units</td>
</tr>
<tr>
<td>IUI</td>
<td>Intra uterine insemination</td>
</tr>
<tr>
<td>IVF</td>
<td>In vitro fertilization</td>
</tr>
<tr>
<td>MAR</td>
<td>Mixed antiglobulin reaction</td>
</tr>
</tbody>
</table>
mil - Millions
ml - Millilitres
mm - Millimetres
n - number
PID - Pelvic inflammatory disease
PR - Pregnancy rate
rpm - rounds per minute
SD - Standard deviation
SIT - Sperm immobilization test
TAT - Tray agglutination test
WHO - World health organization
ZP - Zona pellucida
Acknowledgements

I gratefully acknowledge the inspiration, guidance and assistance of my supervisors, Professor Surangi G Yasawardene, Head, Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardенepura, Dr. Deepal S Weerasekera, Clinical Director and Consultant Obstetrician and Gynaecologist, Prarthana, Centre for ART, Rajagiriya, Dr. James W Catt (former Director of Embryology, Monash IVF, Australia), Scientific Director, Optimal IVF, Australia.

I owe a special word of thanks to Mr. Nishantha Dantanarayana, Executive Director, Prarthana, for granting me to carry out the study using the IUI/IVF laboratory facilities available at the centre. My sincere thanks to Dr. V P Gange, Consultant Obstetrician and Gynaecologist, for his advice and assistance, given throughout my study.

I wish to especially thank Mrs. Ishari Fernando, trained embryologist, Prarthana, for the technical assistance and expertise rendered in IVF laboratory procedures. The contribution by Ms. Jayanthi Witharana, Medical Laboratory Technician, Prarthana, assisting in andrological procedures is also appreciated.

This study could not have been completed without the financial support of National Science Foundation, Sri Lanka. Grant number: RG/2007/HS/02
Incidence of antisperm antibodies and its association to subfertility in couples undergoing assisted reproductive technologies, at a selected centre

Varuni Tennakoon

ABSTRACT

The presence of antisperm antibodies (ASA) can reduce fecundity in both males and females. The immuno-regulatory mechanisms of generation of ASA, their effects on gametes and gamete interactions have been studied extensively; however, some of its clinical implications on subfertility are disputed so far. The literature in the field is quite scarce in Sri Lanka. With the availability of assisted reproductive technologies (ART), detection of the possible causes of subfertility will enable to streamline the treatment. The present study was performed to investigate the incidence of ASA in subfertile couples, and their effects on fertilization processes and pregnancy outcome following ART procedures (intra uterine insemination-IUI / in vitro fertilization-IVF).

Two hundred and thirty subfertile couples were studied from January 2006 to January 2009. Relevant clinical data were obtained by self administered questionnaire and clinical examination. Presence of ASA was elicited using mixed antiglobulin reaction latex bead test (SpermMAR, Fertipro NV, Belgium). Spermatozoa, seminal plasma and serum samples in males and cervical mucus, serum and follicular fluid in females were analyzed for ASA. The test was considered positive if 30% or more of the motile
sperm were attached to the latex particles. The isotype (i.e. IgA, IgG) and location of ASA (i.e. head, midpiece, tail of the sperm) on the spermatozoa were observed. In couples who underwent IVF, fertilization rate and day 03 cleavage rate of embryos were assessed. The pregnancy and miscarriage rates following each ART procedure were noted.

The incidence of ASA was 20.87% among the subfertile couples. It was 12.61% in males and 8.26% in females. No significant correlation observed with presence of ASA and age, duration of marriage/subfertility, type of subfertility and occupation of both males and females. A statistically significant association (P-value=0.036) between presence of ASA and a history of genital surgery was observed in males. The incidence of ASA was proportionately higher among women who have had previous IUIs (11.7%) compared to the women who did not have IUIs (5.88%).

The total fertilization rate was significantly higher (P-value=0.001) and the total cleavage rate was significantly lower (P-value=0.037) in ASA positives than that of the ASA negatives. No significant difference was observed in fertilization and cleavage rates among the Ig isotypes. However, IgA isotype of ASA demonstrated the highest fertilization rate and the lowest cleavage rate. Head or midpiece+tail bound ASA on spermatozoa exhibited more negative effects on cleavage rate. In ASA positives there was a marked increment in pregnancy rate when they underwent IVF (19.23%) than IUI (13.64%). It was noted that best samples for screening for ASA for male would be IgA ASA on spermatozoa and for female IgA and IgG ASA in serum.