Incidence of antisperm antibodies and its association to subfertility in couples undergoing assisted reproductive technologies, at a selected centre.

By

Varuni Tennakoon

M. Phil

2010

Incidence of antisperm antibodies and its association to subfertility in couples undergoing assisted reproductive technologies, at a selected centre.

By

Varuni Tennakoon

Thesis submitted to the University of Sri Jayawardenepura for the award of the Degree of Master of Philosophy in Immunology on

31st December, 2010

I certify that the candidate has incorporated all corrections, amendments and additions recommended by the examiners.

Sg. ymL 30/12/2010 Prof. Surangi G Yasawardene

Head, Department of Anatomy Faculty of Medical Scienceds University of Sri Jayewardenepura

Declaration

The work described in this thesis was carried out by me under the supervision of,

Professor Surangi Gayaneetha Yasawardene

Professor of Anatomy

Doctor Deepal Senaka Weerasekera

Consultant Obstetrician and Gynaecologist

Doctor James William Catt

Consultant Embryologist

A report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

Varuni Tennakoon

30.12.2010

Date

Declaration by the Supervisors

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University of Sri Jayawardenepura for the purpose of evaluation.

SQ YemL

Prof. Surangi G Yasawardene

Weerz _____

Dr. Deepal S Weerasekera

Lulat

Dr. James W Catt

Dedicated to my parents,

My husband Chamil and my two sons

Dinu and Mithu

List of Contents

	Page
List of contents	i
List of tables	viii
List of figures	xi
List of plates	xii
Abbreviations	xiii
Acknowledgements	xv
Abstract	xvi
1. INTRODUCTION	1
2. LITERATURE REVIEW	5
2.1 Historical perspective	5
2.2 Spermatogenesis	7
2.3 Sperm antigens	8
2.4 Antisperm antibodies	9
2.5 Aetiology of antisperm antibody formation	11
2.5.1 Immuno-protective mechanisms in male	11
2.5.2 Development of antisperm antibody in male	13
2.5.2.1 Breach of blood testis barrier	13
2.5.2.2 Infection of the genital tract	14
2.5.2.3 Reduced immunosuppressive activity	15
2.5.3 Immuno-protective mechanisms in female	15
2.5.4 Development of antisperm antibody in females	16

	Page
2.5.4.1 Damage to mucosal layer of the genital tract	17
2.5.4.2 Immunological factors	18
2.5.4.3 Deposition of semen at sites other than vagina	18
2.6 Effects of Antisperm antibodies	19
2.6.1 Effects on semen quality	19
2.6.2 Interference with cervical mucus penetration	20
2.6.3 Effects on fertilization	21
2.6.4 Effects of the type and location of antisperm antibody on	
fertility impairment	23
2.6.5 Complement-mediated cytotoxicity and opsonizing effect through	
the female genital tract	24
2.6.6 Effects of antisperm antibody on capacitation and the acrosome	
reaction and oocyte fusion	25
2.6.7 Post fertilization effects	27
2.7 Current research on defining the antigenic specificity of antisperm	
antibody	28
2.8 Methods of detection of antisperm antibodies	28
2.8.1 Immunobead test (IBT)	29
2.8.2 Mixed antiglobulin reaction (MAR)	29
2.8.3 Enzyme linked immunosorbent assay (ELISA)	30
2.8.4 Tray agglutination test (TAT) and Sperm immobilizing assay (SIT)	30
2.8.5 Flow cytometry (FCM) and radio-labelled agglutinin assay	31

	Page
2.9 Treatment options	32
2.9.1 Immunosuppressive therapies	32
2.9.2 Laboratory techniques	33
2.9.3 Assisted reproductive technologies (ART)	33
2.10 Description of Intra Uterine Insemination (IUI), In-vitro	0
Fertilization (IVF) and Intra-cytoplasmic sperm injection	on (ICSI) 34
2.10.1 Intra Uterine Insemination (IUI)	34
2.10.2 In-vitro Fertilization (IVF)	35
2.10.3 Intra-cytoplasmic sperm injection (ICSI)	37
2.11 Prevalence of antisperm antibody and immune subfertil	ity 39
2.12 Clinical significance	39
2.13 Objectives	41
3. MATERIALS AND METHODS	42
3.1 Study Design	42
3.2 Sample size	44
3.3 Sample selection	44
3.3.1 Exclusion criteria	45
3.4 Description of the study	45
3.4.1 Information from questionnaire	45
3.4.2 Examination	46
3.4.3 Investigations	46
3.5 Sample collection	46

iii

	Page
3.6 Mixed Antiglobulin Reaction (MAR) of sperms	47
3.6.1 SpermMAR test	48
3.6.1.1 Kit Contents	48
3.6.1.2 Direct SpermMAR test	49
3.6.1.3 Indirect SpermMAR test	49
3.7 ART procedures	50
3.7.1 IUI procedure	50
3.7.2 IVF-ET procedure	51
3.8 Methods of fertilization	51
3.8.1 Standard IVF	51
3.8.2 ICSI	53
3.9 Equations calculated for analysis of data	54
3.9.1 Fertilization rate	54
3.9.2 Cleavage rate	55
3.9.3 Pregnancy rate	56
3.9.4 Miscarriage rate	56
3.10 Quality control	57
3.11 Analysis of data	57
4. RESULTS	59
4.1 Incidence of antisperm antibodies	59
4.2 Demographic details of the couple	60
4.2.1 Age	60

iv

	Page
4.2.2 Duration of marriage and duration of subfertility	63
4.2.3 Occupation	66
4.3 Type of subfertility	66
4.4 Causes for formation of antisperm antibodies	70
4.4.1 Male causes	70
4.4.1.1 Associated genito-urinary conditions	70
4.4.1.2 Associated autoimmune conditions and illnesses	70
4.4.1.3 Use of addictables	72
4.4.2 Female causes	72
4.5 Distribution of antisperm antibodies in males and females	76
4.5.1 Distribution of immunoglobulin (Ig) types of antisperm	
antibodies in males and females	76
4.5.2 Pattern of localization of antisperm antibodies in males and females	80
4.6 Effects of antisperm antibodies	81
4.6.1 Effects of ASA on fertilization and cleavage of embryos	81
4.6.1.1 Effects of ASA (irrespective of type and location) on	
fertilization and cleavage of embryos	81
4.6.1.2 Effects of type of ASA on fertilization and cleavage	
of embryos	84
4.6.1.3 Effects of location of ASA on fertilization and cleavage	
of embryos	87
4.6.2 Effects of antisperm antibodies on clinical pregnancy rate	90

		Page
	4.6.2.1 Effects of ASA (irrespective of type and location) on	
	clinical pregnancy rate in different ART procedures	90
	4.6.2.2 Effects of type of ASA on clinical pregnancy rate	91
	4.6.2.3 Effects of location of ASA on spermatozoa, on clinical	
	pregnancy rate	91
	4.6.3 Effects of ASA on pregnancy losses (miscarriage rate)	93
5.	DISCUSSION	94
6.	CONCLUSIONS	115
7.	REFERENCES	117
8.	APPENDICES	141
	Appendix 1 – Journal Publications and Communications	141
	Appendix 2 – Ethical Clearance	145
	Appendix 3 – Questionnaire	146
	Appendix 4 – Consent form	147
	Appendix 5a – Embryo culture mediums	148
	Appendix 5b – Sperm rinse medium	149
	Appendix 6 – Veeks classification of embryo grading	150
	Appendix 7a – Selection criteria for performing IUI and IVF	151
	Appendix 7b – Selection criteria for performing standard IVF, ICSI and	152
	IVF/ICSI split	
	Appendix 8 – Sperm Mar test; manufacturer instructions	153
	Appendix 9 – Standard protocol for controlled ovarian stimulation	154
	Appendix 10 – Density Gradient method for sperm preparation for IUI	155

List of tables

		Page
Table 2	Several studies of patients with ASA who underwent in-vitro	
	fertilization treatment and the relationship of their ASA to	
	treatment outcome	22
		22
Table 4.1	Age distribution and pattern of ASA distribution in relation to the	
	age of females and males in the total study population	62
Table 4.2	The distribution of ASA with the duration of marriage	64
Table 4.3	The ditribution of ASA with the duration of subfertility	65
Table 4.4	The occupational categories and the corresponding occupations	67
Table 4.5	Pattern of distribution of ASA in different occupational categories	
	in males and females	68
Table 4.6	Incidence of ASA among Primary and secondary subfertile couples	69
Table 4.7	Incidence of ASA with or without a history of genital surgery	71

		Page
Table 4.8	Incidence of ASA with childhood mumps, co-morbid illnesses and	
	use of addictables (alcohol and cigarette)	74
Table 4.9	Incidence of ASA with previous intra uterine insemination (IUI), pelvic inflammatory disease (PID), termination of pregnancy, autoimmune diseases and co-morbid illnesses in females	75
Table 4.10	Gross data of the distribution of Ig types of antisperm antibodies	
	in different body fluids in the total study sample	78
Table 4.11a	Distribution of Ig types of antisperm antibodies in different body fluids in males and females (tabulated data)	79
Table 4.11b	Distribution of Ig types of antisperm antibodies in different	
	components of semen (tabulated data)	79
Table 4.12	Pattern of localization of antisperm antibodies on spermatozoa in relation to the Ig type of ASA in males and females	82
Table 4.13a	Insemination, fertilization and cleavage of oocytes in standard IVF,	
	ICSI and as a total among ASA positives and ASA	85

		Page
Table 4.13b	Fertilization rates and cleavage rates of embryos among ASA	
	negatives and ASA positives	85
Table 4.14a	Insemination, fertilization and cleavage of oocytes corresponding	
	To type of ASA in standard IVF, ICSI and as a total among ASA	
	positives	86
Table 4.14b	Immunoglobulin (Ig) isotype of ASA and corresponding	
	Fertilization rates and cleavage rates of embryos	86
Table 4.15a	Insemination, fertilization and cleavage of oocytes corresponding	
	to the location of ASA in standard IVF, ICSI and as a total among	
	ASA positives	88
Table 4.15b	Location of ASA on spermatozoa and corresponding fertilization	
	rate and cleavage rate of embryos	88
Table 4.16	Occurrence of clinical pregnancies with the type of ASA and	
	location of ASA on spermatozoa	92

	List of figures	Page
Figure 4.1	Incidence, distribution of immunoglobulin (Ig) isotypes and	
	locations of ASA among subfertile couples	61
Figure 4.2a	Incidence of ASA with the age of females	62
Figure 4.2b	Incidence of ASA with the age of males	62
Figure 4.3	The distribution of ASA with the duration of marriage	64
Figure 4.4	The distribution of ASA with the duration of subfertility	65
Figure 4.5a	Pattern of distribution of ASA in different occupational	
	categories in males	68
Figure 4.5b	Pattern of distribution of ASA in different occupational categories in females	68
Figure 4.6	Incidence of ASA among Primary and secondary subfertile couples	69
Figure 4.7	Incidence of ASA with or without a history of genital surgery	71
Figure 4.8	Flow chart of total number of couples that underwent different treatment procedures, their ASA status and pregnancy outcome	83

х

List of plates

		Page
Plate 2.1	IVF	37
Plate 2.2	ICSI	38
Plate 3.1	Day 0 oocyte	54
Plate 3.2	Day 01 embryo	54
Plate 3.3	Day 03 embryo	55
Plate 4.1	Negative spermMAR test	59
Plate 4.2	Positive spermMAR test	60
Plate 4.3	Head bound ASA	80
Plate 4.4	Tail bound ASA	80
Plate 4.5	Midpiece + tail bound ASA	80

Abbreviations

ART	- Assisted reproductive technologies
ASA	- Antisperm antibodies
Chi-sq	- Chisquare
cm	- Centimetres
CR	- Cleavage rate
ELISA	- Enzyme linked immunosorbent assay
ESHRE	- European society for human reproduction and embryology
ET	- Embryo transfer
Fc	- Fragment crystalizable
FCM	- Flow cytometry
FR	- Fertilization rate
FSH	- Follicular stimulating hormone
GnRH	- Gonadotrophin releasing hormone
hCG	- Human choriogonadotrophin
IBT	- Immunobead test
ICSI	- Intracytoplasmic sperm injection
Ig	- Immunoglobulin
i-IBT	- Indirect immunobead test
IU	- International units
IUI	- Intra uterine insemination
IVF	- In vitro fertilization
MAR	- Mixed antiglobulin reaction

mil	- Millions
ml	- Millilitres
mm	- Millimetres
n	- number
PID	- Pelvic inflammatory disease
PR	- Pregnancy rate
rpm	- rounds per minute
SD	- Standard deviation
SIT	- Sperm immobilization test
ТАТ	- Tray agglutination test
WHO	- World health organization
ZP	- Zona pellucida

Acknowledgements

I gratefully acknowledge the inspiration, guidance and assistance of my supervisors, Professor Surangi G Yasawardene, Head, Department of Anatomy, Faculty of Medical Sciences, University of Sri Jayawardenepura, Dr. Deepal S Weerasekera, Clinical Director and Consultant Obstetrician and Gynaecologist, Prarthana, Centre for ART, Rajagiriya, Dr. James W Catt (former Director of Embryology, Monash IVF, Australia), Scientific Director, Optimal IVF, Australia.

I owe a special word of thanks to Mr. Nishantha Dantanarayana, Executive Director, Prarthana, for granting me to carry out the study using the IUI/IVF laboratory facilities available at the centre. My sincere thanks to Dr. V P Gange, Consultant Obstetrician and Gynaecologist, for his advice and assistance, given throughout my study.

I wish to especially thank Mrs. Ishari Fernando, trained embryologist, Prarthana, for the technical assistance and expertise rendered in IVF laboratory procedures. The contribution by Ms. Jayanthi Witharana, Medical Laboratory Technician, Prarthana, assisting in andrological procedures is also appreciated.

This study could not have been completed without the financial support of National Science Foundation, Sri Lanka. Grant number: RG/2007/HS/02

Incidence of antisperm antibodies and its association to subfertility in couples undergoing assisted reproductive technologies,

at a selected centre

Varuni Tennakoon

ABSTRACT

The presence of antisperm antibodies (ASA) can reduce fecundity in both males and females. The immuno-regulatory mechanisms of generation of ASA, their effects on gametes and gamete interactions have been studied extensively; however, some of its clinical implications on subfertility are disputed so far. The literature in the field is quite scarce in Sri Lanka. With the availability of assisted reproductive technologies (ART), detection of the possible causes of subfertility will enable to streamline the treatment. The present study was performed to investigate the incidence of ASA in subfertile couples, and their effects on fertilization processes and pregnancy outcome following ART procedures (intra uterine insemination-IUI / in vitro fertilization-IVF).

Two hundred and thirty subfertile couples were studied from January 2006 to January 2009. Relevant clinical data were obtained by self administered questionnaire and clinical examination. Presence of ASA was elicited using mixed antiglobulin reaction latex bead test (SpermMAR, Fertipro NV, Belgium). Spermatozoa, seminal plasma and serum samples in males and cervical mucus, serum and follicular fluid in females were analyzed for ASA. The test was considered positive if 30% or more of the motile

sperm were attached to the latex particles. The isotype (i.e. IgA, IgG) and location of ASA (i.e. head, midpiece, tail of the sperm) on the spermatozoa were observed. In couples who underwent IVF, fertilization rate and day 03 cleavage rate of embryos were assessed. The pregnancy and miscarriage rates following each ART procedure were noted.

The incidence of ASA was 20.87% among the subfertile couples. It was 12.61% in males and 8.26% in females. No significant correlation observed with presence of ASA and age, duration of marriage/subfertility, type of subfertility and occupation of both males and females. A statistically significant association (P-value=0.036) between presence of ASA and a history of genital surgery was observed in males. The incidence of ASA was proportionately higher among women who have had previous IUIs (11.7%) compared to the women who did not have IUIs (5.88%).

The total fertilization rate was significantly higher (P-value=0.001) and the total cleavage rate was significantly lower (P-value=0.037) in ASA positives than that of the ASA negatives. No significant difference was observed in fertilization and cleavage rates among the Ig isotypes. However, IgA isotype of ASA demonstrated the highest fertilization rate and the lowest cleavage rate. Head or midpiece+tail bound ASA on spermatozoa exhibited more negative effects on cleavage rate. In ASA positives there was a marked increment in pregnancy rate when they underwent IVF (19.23%) than IUI (13.64%). It was noted that best samples for screening for ASA for male would be IgA ASA on spermatozoa and for female IgA and IgG ASA in serum.