INVESTIGATION OF GLYCAEMIC INDICES OF

BREAKFAST MEALS TYPICAL TO SRI LANKA

Bø

Rahal Dananja Widanagamage

Thesis submitted to the University of Shii J-ayeswandemepura for the award of the Degree of Master of Philosophy in Biochemistry in December 2007.

DECLARATION BY CANDIDATE

The work described in this thesis was carried out by me under the supervision of Dr. S. Ekanayake (Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Prof. J. Welihinda (Department of Biochemistry, Faculty of Medicine, University of Colombo) and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

Pri x

R. D. Widanagamage

16.10.2008

Date

DECLARATION BY SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

8 League

Dr. S. Ekanayake

2 eyall

Prof. J. Welihinda 16 | 10 | 0 %

TABLE OF CONTENTS

	Page No.
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF PLATES	ix
ABBREVIATIONS	xi
ACKNOWLEDGEMENTS	xiv
ABSTRACT	xvi
1. INTRODUCTION	1
2. LITERATURE REVIEW	6
2.1. Glycaemic Index	6
2.2. Methodological and other aspects related to GI	8
2.2.1. Number of subjects to be employed in a GI study	9
2.2.2. Number of times a reference food be given to a subject in a	
GI study	9
2.2.3. The physiological status of the volunteers	9
2.2.4. The type of reference food to be used in a GI study	10
2.2.5. Meal volume and consumption time recommended for a GI s	study 11
2.2.6. Nature of the carbohydrate to be used in a GI study	11
2.2.7. Amount of available carbohydrates to be given to a volunteer	r 11
2.2.8. Time of the day to perform the GI study	12
2.2.9. Effect of subject activities the day before the GI test day	12

2.2.10. Blood sampling and sampling schedule to be employed in a	
GI study	13
2.3. Factors affecting the GI	14
2.3.1. Nutritional factors that affect GI	14
2.3.1.1.Effect of proteins on GI	15
2.3.1.2.Effect of fat on GI	16
2.3.1.3.Effect of dietary fibre on GI	16
2.3.2. Factors related to carbohydrate quality	19
2.3.2.1.Effect of botanical source on GI	19
2.3.2.2.Effect of the type of carbohydrate on GI	20
2.3.2.3.Effect of physical and chemical structure of starch on GI	21
2.3.3. Effect of different processing methods on GI	22
2.3.4. Effect of particle size on GI	25
2.3.5. Effect of acidity on GI	26
2.3.6. Effect of gastric emptying time on GI	26
2.3.7. Effect of satiety on GI	27
2.3.8. Effect of formation of resistant starch on GI	27
2.3.9. Effect of other factors on GI	28
2.3.10. Effect of chemical modification of foods on GI	29
2.3.11. Effect of second meal on GI	29
2.3.12. Collective effect of factors on GI	29
2.4. Glycaemic Index, health and disease	31
2.5. Sri Lankan cuisine	33
2.5.1. Roti	34

2.5.2. Pittu	34
2.5.3. Hoppers	34
2.5.4. Olu-milk rice	35
2.5.5. Breadfruit	35
2.5.6. Chickpea	36
2.5.7. Mungbean	36
2.5.8. Cowpea	36
MATERIALS AND METHODS	37
3.1. Materials	37
3.1.1. Raw materials for food preparation	37
3.1.2. Water, chemicals and solvents	38
3.1.3. Collection of the blood samples from the volunteers	38
3.2. Methods	38
3.2.1. Preparation of foods	38
3.2.1.1. <i>Roti</i>	39
3.2.1.2. <i>Pittu</i>	39
3.2.1.3.Hoppers	40
3.2.1.4.Chickpea	41
3.2.1.5.Mungbean	41
3.2.1.6.Cowpea	41
3.2.1.7.Milk-rice made with <i>olu</i> -rice	43
3.2.1.8.Breadfruit	43
3.2.2. Preparation of flour from foods	46

3.

3.2.3. Analysis of proximate composition of foods	46
3.2.3.1.Moisture content	47
3.2.3.2.Ash content	47
3.2.3.3.Digestible starch	47
3.2.3.4. Analysis of glucose concentration using Glucose-Oxidase kits	48
3.2.3.5.Standard curve of glucose using Glucose-Oxidase kit	49
3.2.3.6.Total starch	49
3.2.3.7.Fat content	50
3.2.3.8.Dietary fibre content	51
3.2.3.9.Protein content	53
3.2.4. Determination of Glycaemic Indices	53
3.2.4.1.Volunteer preparation for the study	54
3.2.4.2.Meal portion size	54
3.2.4.3. Ethical clearance and volunteer consent	54
3.2.4.4.Pilot study	54
3.2.4.5.Collection of blood samples and calculation of GI	55
3.2.5. Study of the parameters affecting GI	56
3.2.5.1.Effect of particle size on GI of roti	56
3.2.5.2. Water absorption index (WAI) and water solubility index	
(WSI)	56
3.2.5.3.Amylose content	57
3.2.5.4.Effect of extent of the gelatinization of starch granules on GI	58
3.2.5.5.Molecular size distribution of carbohydrates	59
3.2.6. Statistical analysis	60

4. RESULTS

4.1. Chemical composition of foods	61
4.1.1. Moisture, ash, protein, fat and energy contents of foods	61
4.1.2. Digestible starch, IDF, SDF and resistant starch contents of foods	61
4.2. Glycaemic Indices of foods	66
4.3. Palatability and meal sizes	66
4.4. Glycaemic Load (GL)	66
4.5. Fasting serum glucose concentrations, postprandial peak serum	
glucose concentrations and peak time	69
4.6. Glycaemic responses to foods	69
4.7. Studies of factors affecting the GI	74
4.7.1. Effect of dietary fibre, fat and protein	74
4.7.2. Particle effect	79
4.7.3. Effect from properties of starch	81
4.7.3.1.Amylose and amylopectin contents	81
4.7.3.2. Appearance of starch granules under the light microscope	81
4.7.3.3.Extent of swelling of starch granules in different foods	81
4.7.3.4. Molecular size distribution of carbohydrates	82

5. DISCUSSION

6. CONCLUSION

7. REFERENCES

107

106

92

61

ANNEXURE I	List of communications from the thesis and manuscripts submitted	134
ANNEXURE II	Proximate composition of different types of flour (in 100 g) used in <i>roti</i> , <i>pittu</i> and hoppers preparations	135
ANNEXURE III	Table 1. Proximate composition of coconut flesh and first extraction of coconut milk	136
ANNEXURE IV	The questionnaire given to the volunteers who participated in the GI study	137
ANNEXURE V	Ethical Approval from the Ethical Review Committee, Faculty of Medical Sciences, University of Sri Jayewardenepura	138
ANNEXURE VI	Consent form given to the volunteers participated in the GI study	139
ANNEXURE VII	Average incremental glycaemic responses to foods	141

LIST OF TABLES

		Page No.
Table 1.1	Typical Sri Lankan breakfast meals of which GI were determine	d 5
Table 2.1	Categories of GI	8
Table 3.1	Raw materials used for different roti preparations per person	39
Table 3.2	Raw materials used for different pittu preparations per person	40
Table 4.1	Moisture, ash, protein, fat and energy content of foods	
	expressed as fresh weight	63
Table 4.2	Digestible starch, IDF, SDF and resistant starch (RS)	
	of different foods expressed as fresh weight	64
Table 4.3	The IAUC, meal sizes, GI and GL of foods	67
Table 4.4	Palatability and meal sufficiency of the foods studied	68
Table 4.5	Fasting serum glucose concentration and peak serum	
	glucose concentration	70
Table 4.6	IAUC and peak serum glucose concentration for standard bread,	
	normal wheat flour roti and ground wheat flour roti	80
Table 4.7	Amylose: amylopectin ratios, WAI and WSI of foods studied	83
Table 4.8	Distribution patterns of carbohydrates of different molecular	
	weights in wheat flour <i>roti</i> , wheat flour <i>pittu</i> and chickpea in a	
	sepharose gel column	91

LIST OF FIGURES

		Page No
Figure 4.1	Standard curve for glucose	65
Figure 4.2	Average incremental glycaemic responses to wheat flour roti,	
	wheat flour <i>pittu</i> and standard bread	71
Figure 4.3	Average incremental glycaemic responses to chickpea and	
	standard bread	72
Figure 4.4	Average glycaemic response to breadfruit	73
Figure 4.5	Protein content of foods	75
Figure 4.6	Fat content of foods	75
Figure 4.7	IDF content of foods	76
Figure 4.8	SDF content of foods	76
Figure 4.9	Effect of protein concentration (g/ 100 g digestible starch contai	ning
	meal) on the GI	77
Figure 4.10	Effect of IDF concentration (g/ 100 g digestible starch containin	g
	meal) on the GI	77
Figure 4.11	Effect of SDF concentration (g/ 100 g digestible starch containing	ng
	meal) on the GI	78
Figure 4.12	Standard curve for amylose	84
Figure 4.13	Molecular size distribution of carbohydrates of wheat flour roti,	
	wheat flour <i>pittu</i> and chickpea meal	90

LIST OF PLATES

T			-	τ.	
μ	21	ge		Ir	1
1	a_j	20	1	11	,,

Plate 3.1	Roti preparations (a) wheat flour roti (b) rice flour roti	
	(c) kurakkan flour <i>roti</i> (d) atta flour <i>roti</i>	42
Plate 3.2	Pittu preparations and miscellaneous foods (a) wheat flour pittu	
	(b) rice flour <i>pittu</i> (c) kurakkan flour <i>pittu</i> (d) hoppers	
	(e) <i>olu</i> -milk rice (d) breadfruit	44
Plate 3.3	Boiled legumes (a) chickpea (b) mungbean (c) cowpea	45
Plate 4.1	Light microscopic pictures of wheat starch granules stained with	
	iodine in KI (10×10) (a) raw wheat flour (b) wheat flour <i>roti</i>	
	(c) wheat flour <i>pittu</i> (d) standard bread	85
Plate 4.2	Light microscopic pictures of wheat and rice starch granules	
	stained with iodine in KI (10 \times 10) (a) raw rice flour	
	(b) raw rice: wheat 1:1 ratio (c) rice flour roti (d) rice flour pittu	
	(e) hoppers	86
Plate 4.3	Light microscopic pictures of wheat and kurakkan starch granules	
	stained with iodine in KI (10×10) (a) raw kurakkan flour	
	(b) raw wheat: kurakkan 2:3 ratio (c) kurakkan flour roti	
	(d) kuakkan flour <i>pittu</i>	87
Plate 4.4	Light microscopic pictures of starch granules of atta, olu-rice	
	and breadfruit stained with iodine in KI (10 \times 10) (a) raw atta flour	
	(b) atta flour <i>roti</i> (c) raw <i>olu</i> -rice (d) <i>olu</i> -milk rice	
	(e) raw bread fruit (f) boiled breadfruit	88

Plate 4.5 Light microscopic pictures of legume starch granules stained with iodine in KI (10 × 10) (a) raw chickpea (b) boiled chickpea
(c) raw mungbean (d) boiled mungbean (e) raw cowpea
(f) boiled cowpea

89

x

ABBREVIATIONS

AB-S	Absorbance of the standard glucose
AB-T	Absorbance of the test sample
ANOVA	Analysis of Variance
AUC	Area Under Curve
AX	Arabinoxylan
CHD	Coronary Heart Disease
CV	Coefficient of Variance
CVD	Cardio Vascular Disease
FF _M	Moisture of the fresh food
FM	Fresh Weight
F _M	Moisture of the flour
FW	Fresh Weight
GI	Glycaemic Index
GL	Glycaemic Load
HDL	High Density Lipoprotein
HMWC	High Molecular Weight Carbohydrates
IAUC	Incremental Area Under Curve
IDF	Insoluble Dietary Fibre
IGF	Insulin-like Growth Factor
п	Insulinaemic Index
LDL	Low Density Lipoprotein
LMWC	Low Molecular Weight Carbohydrates
MMWC	Medium Molecular Weight Carbohydrates

N_1	Normality of standard HCl
NA	Not Applicable
ND	Not Detected
r.p.m.	Rounds per minute
RAG	Rapidly Available Glucose
RS	Resistant Starch
SAG	Slowly Available Glucose
SD	Standard Deviation
SDF	Soluble Dietary Fibre
SEM	Standard Error of the Mean
SI	Satiety Index
TDF	Total Dietary Fibre
V	Nutrient value calculated from analysis of the flour sample
Vs	Total volume of the sample
W	Sample weight in milligram
W ₁₀₅	Constant weight of the crucible with dried sample at 105 $^{\circ}$ C
W ₅₅₀	Weight of the crucible with sample after incineration at 550 $^{\circ}$ C
WAI	Water Absorption Index
W _b	Constant weight of the beaker
W _c	Weight of the empty centrifuge tube
W _d	Dry weight of the sample
Wg	Weight of the centrifuge tube containing the gel
WHO/ FAO	World Health Organization/ Food and Agriculture Organization
Ws	Constant weight of the beaker containing dried supernatant

xii

W_{sample}	Weight of the sample analyzed
WSI	Water Solubility Index
х	Volume of standard HCl used for the sample in mL
Y	Volume of standard HCl used for the blank

ACKNOWLEDGEMENT

My knowledge relevant to this project started growing under the excellent supervision and periodical manoeuvring of my supervisor Dr. Sagarika Ekanayake (Department of Biochemistry, University of Sri Jayewardenepura). Had it not been for her commitment, guidance and contribution not only in experiments, but also in thesis and manuscript preparation, it would have been difficult for me to have completed my tasks within stipulated periods. Therefore I owe my supervisor Dr. Sagarika Ekanayake a deep debt of gratitude.

It is with great appreciation and gratitude that I acknowledge my supervisor Prof. Jayantha Welihinda (Department of Biochemistry, University of Colombo) for his supervision and directing me towards the achievement of goals of the project with invaluable suggestions, advices and comments in my thesis work and manuscript preparations.

My heartfelt gratitude goes to Prof. E.R. Jansz (Professor of Biochemistry, Department of Biochemistry, University of Sri Jayewardenepura) for providing the stipend (2006) from his grant (IPICS SRI: 07), some chemicals and allowing me to use the equipment as well as creating an enthusiastic research environment.

I am very much grateful to all the volunteers of the Faculty of Medical Sciences and the production staff of Camcol Polythene Pvt. Ltd (Malabe) who participated in the GI study dedicating time and the co-operation throughout the study in conducting my experiments.

The grants NSF/RG/2005/AG/10, IFS-E-3941/1 and NRC-05-03 are greatly acknowledged for the financial support including equipment, chemicals and my allowance.

I wish to thank Dr. M.I.F.P. Jayewardene (Head of the Department in 2006) and Prof. H. Peiris (Head, Department of Biochemistry, University of Sri Jayewardenepura) for allowing me to work in the Department.

I am glad to acknowledge Dr. R. Wickremasinghe (Head, Department of Parasitology, University of Sri Jayewardenepura) and the technical officers Mr. W.D.T. Tilakarathne and Ms. L.D.G.G. De Silva for the assistance given to me to carry out the light microscopic studies.

My thank goes to Dr. W.M.A.D.B. Wikramasinghe (Rice Research Institute, Batalagoda) for the assistance given to me in purchasing the AT 353 rice variety.

My thank goes to Ms A.S. Liyanarchchi (Camcol Polythene Pvt. Ltd.) who guided me in the meal preparation of volunteer diets and helping me to find dedicated volunteers.

My cordial thank goes to the laboratory colleagues Ms. A.M.B. Priyadarshani, Mr. Indika Senavitathna, Ms. Thushari Bandara and Mr. A.A.P. Keerthi for the assistance given to me throughout the study.

I also thank the academic and non academic staff of the Department of Biochemistry, University of Sri Jayewardenepura for helping me in many ways.

Last but not least I am very much grateful to my parents and brothers who always gave me a helping hand in many ways.

INVESTIGATION OF GLYCAEMIC INDICES OF BREAKFAST MEALS TYPICAL TO SRI LANKA Rahal Dananja Widanagamage

ABSTRACT

The Glycaemic Index (GI), which ranks foods according to their acute glycaemic impact is of immense use to dieticians in planning meals for patients seeking glycaemic control through dietary management. The GI values of typical Sri Lankan meals except for a few foods are not currently available. Hence the objective of this study was to determine the GI of selected breakfast meals typical to Sri Lanka and determine the factors responsible for the differences in GI.

The selected breakfast meals were *roti* made with wheat, rice, kurakkan and atta flour, *pittu* (wheat, rice and kurakkan), hoppers, boiled legumes (chickpea, mungbean and cowpea), *olu*-milk rice and boiled breadfruit. *Roti* and *pittu* preparations contained 50% coconut scrapings (w/w).

The proximate compositions (ash, protein, insoluble and soluble dietary fibre, fat, digestible and total starch) of the above food items were determined by standard methods.

The glycaemic indices were determined according to the WHO criteria with healthy volunteers (n=10, age 20-30 years). The volunteers were subjected to overnight fast and served the test foods and standard food/ Prima-crust top (containing 50g or 25g digestible starch). The GI values were calculated using the IAUC (Incremental Area Under Curve) of test and standard.

The light microscopic studies of isolated starch ($\times 100$ and $\times 400$), effect of particle size, water solubility, amylose, amylopectin and water absorption indices of food flour and molecular size distribution of carbohydrates of selected foods (wheat flour *roti*, wheat flour *pittu* and chickpea) were studied in order to investigate the factors responsible for significant changes in GI.

The digestible carbohydrate content per 100 g fresh weight of the foods studied ranged from 9.3-41.8 %. The resistant starch content of kurakkan flour *roti*, chickpea and mungbean were 6.6 %, 2.7 % and 1.2 % respectively. The IDF (insoluble dietary fibre), SDF (soluble dietary fibre), protein and fat content per 100 g fresh weight of cereal based foods, *olu*-milk rice and breadfruit ranged from 1.3 to 11.6 %, 0.7 to 3.1 % and 0.5 to 22.3 % respectively. The IDF, SDF, protein and fat contents per 100 g fresh weight of legumes were 6.6 to 8.2 %, 1.9 to 3.1 %, 8.8 to 10.8 % and 0.9 to 3.0 % respectively.

The boiled legumes (chickpea, mungbean and cowpea) were categorized as low GI foods and the GI (\pm SEM) were 29 \pm 5, 57 \pm 6 and 49 \pm 8 respectively. Wheat flour *roti*, rice flour *roti*, kurakkan flour *roti*, atta flour *roti*, kurakkan flour *pittu* and breadfruit were categorized as medium GI foods with corresponding GI values of 71 \pm 6, 69 \pm 7, 70 \pm 8, 67 \pm 9, 85 \pm 6 and 64 \pm 7 respectively. Hoppers, wheat flour *pittu*, rice flour *pittu* and *olu*-milk rice were classified as high GI foods and the GI (\pm SEM) were 120 \pm 8, 101 \pm 8, 103 \pm 7 and 91 \pm 8 respectively.

The GI values of the foods studied significantly (p<0.01) and negatively correlated with the IDF (ρ -0.780), SDF (ρ -0.712) and protein (ρ -0.738) contents in gram per 100 g digestible starch containing foods.

The GI values of *roti* were significantly lower than that of *pittu* except for kurakkan flour *pittu*. This was irrespective of wheat flour *roti* and wheat flour *pittu* being made using the same composition of wheat flour and coconut scrapings. In order to explain this difference effect of processing on starch structure was studied.

According to light microscopic pictures, in *roti* where a dry cooking method has been employed the starch granules were swollen but intact. A significant (p<0.05) increase in length and breadth of wheat starch granules was observed in wheat flour *pittu* compared to wheat flour *roti*. The molecular size distribution patterns of carbohydrates of wheat flour *roti* and wheat flour *pittu* also indicated that wheat flour *pittu* to have a higher percentage of low molecular size carbohydrates compared to wheat flour *roti*. The other wet heat processed foods (hoppers, rice flour *pittu*, kurakkan flour *pittu*, *olu*milk rice and breadfruit) also had their starch granules disintegrated. According to the above observations the reason for the increase in GI of wet heat processed foods compared to dry heat processed foods could be mainly attributed to higher starch granular gelatinization/ disintegration. As revealed by gel filtration studies and light microscopic pictures gelatinized/ cell enclosed starch granular structure of boiled legumes could be partly responsible for the low GI of those foods.