The work described in this thesis was carried out by the under the supervision of Prof. (Mrs). S.M.D.N. Wickramasinghe and Prof. (Wits) MALLTHADREWARD a report on this has not been submitted to any other University for another degree.

Dr. (Miss). S. S. Iddamaldeniya

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

S. M. J. N. Williaman phe-

Supervisor,

Prof. (Mrs) S.M.D.N. Wickramasighe,

Department of Biochemistry,

Faculty of Medical Sciences,

University of Sri Jayawardenepura,

Gangodawila,

Nugegoda.

P. J. Matorias

Supervisor, Prof. (Mrs) M.I. Thabrew, Department of Biochemistry and Clinical Chemistry, Faculty of Medicine University of Kelaniya, Ragama.

Investigation of the effects of a traditional Sri Lankan

Medicine on Hepatocarcinogenesis

by

Samantha Sudharshani Iddamaldeniya

Thesis submitted to the University of Sri Jayawardenepura for the award of the degree of Master of Philosophy in Biochemistry on 30th June 2003

Contents

Table of Contents	i
List of Tables	ix
List of Figures	xi
List of Plates	xiii
ACKNOWLEDGEMENTS	XV
ABSTRACT	xviii

1 INTRODUCTION

1.1 Background and justification	1
1.2 Scope of the study	5
1.2.1 General Objective	5
1.2.2 Specific objectives	5

2 LITERATURE REVIEW

2.1 Concept of cancer in allopathic medicine	6
2.1.1 Historical aspects	6
2.1.2 Neoplasia	7
2.1.3 Tumour nomenclature	7
2.1.4 Grading and staging of neoplasia	9
2.2 Pathogenesis of neoplasia	10
2.2.1 Control of cell growth	11

2.2.2 Growth Factors	12
2.3 Biology of tumour growth	14
2.3.1 Malignant change in the target cell- transformation	14
2.3.1.1 Chemical carcinogens	15
2.3.1.1.i Nitrosamines and Nitrosamides	17
(N-Nitroso Compounds)	
2.3.1.1.ii Metabolic pathways leading to carcinogen	19
activation and detoxication.	
2.4 Chemical carcinogenesis	20
2.4.1 Mechanisms involved in initiation and promotion	23
of chemical carcinogenesis	
2.4.1.1 Initiation of carcinogenesi	23
2.4.1.1.i Metabolic activation of carcinogens	23
2.4.1.1.ii Molecular targets of initiation	24
2.4.1.1.iii Initiated Cell	25
2.4.1.2 Promotion of carcinogenesis	26
2.5 Physical carcinogens	27
2.6 Viral carcinogens	27
2.7 Growth of transformed cell	28
2.7.1 Clonality of tumours	28
2.7.2 Kinetics of tumour cell growth	29
2.8 Predisposing factors for carcinogenesis	30
2.9 Cancer suppressor genes	31

2.10 Tumour markers	32
2.10.1 Definition	32
2.10.2 Features of a tumour marker	34
2.10.3 Glutathione S-transferase	35
2.10.3.1 Introduction	35
2.10.3.2 Classification	35
2.10.3.3 Structure	36
2.10.3.4 Functions	37
2.10.3.4.i As a tumour marker	37
2.10.3.4.i.i Mechanism of action of inducing	38
GST-P foci	
2.10.3.4.ii Detoxification properties	39
2.10.3.4.iii Other functions	39
2.11 Concept of cancer in Ayurveda	40
2.11.1 Treatment of cancer in Ayurveda	42
2.11.1.1 Systemic	42
2.11.1.2 Local	44
2.11.2 Plants used in Ayurveda for cancer	44
2.11.3 Plants with experimentally confirmed anti-cancer activity	45
2.11.3.1 Anti cancer activity of plants in crude extract	45
2.11.3.2 Anti cancer activity of active principle/s	53
isolated from plants	
2.11.4 Formulations used for cancer treatment	57
2.11.5 Identified modes of actions of plant based anticarcinogens	58

2.12 Botanical Features, major chemical constituents and medicinal	60
uses of Nigella sativa, Hemidesmus indicus and Smilax glabra.	
2.12.1 Nigella sativa Linn.sp	60
2.12.1.1 Botanical features	60
2.12.1.2 Composition and major chemical constituents	61
2.12.1.3 Uses	62
2.12.2 Hemidesmus indicus (L) R.Br.	62
2.12.2.1 Botanical features	62
2.12.2.2 Composition and major chemical constituents	64
2.12.2.3 Uses	64
2.12.3 Smilax glabra Rox b.	65
2.12.3.1 Botanical features	65
2.12.3.2 Chemical composition major chemical constituents	66
2.12.3.3 Uses	66
2.12.4 Allium sativum (Garlic)	67

3 MATERIALS AND METHODS

3.1 MATERIALS

3.1.1 Experimental animals	71
3.1.2 Plant materials	71
3.1.3 Chemicals	71

3.2 METHODS

3.2.1 Preparation of the plant decoction	73
3.2.2 Effects of the decoction on initiation and	74
promotion of carcinogenesis	
3.2.2.1 Liver Medium Term Bioassay Protocol	74
for induction of Carcinogenesis	
3.2.2.2 Experimental Design	74
3.2.2.3 Dosage and administration of decoction and garlic	77
3.2.2.4 Pentobarbital Anaesthesia	77
3.2.2.5 Partial Hepatectomy	78
3.2.2.5.i Procedure	78
3.2.2.6 Collection and fixation of liver tissues	81
3.2.2.7 10% buffered formalin	81
3.2.2.8 Processing, embedding, and cutting of liver tissues	81
3.2.2.9 Preparation of Poly-L Lysine coated slides	82
3.2.2.10 Glutathione S-transferase –P (GST-P, EC 2.5.1.18) Immunol	nistochemistry
82	
3.2.2.10.i H_2O_2 for blocking endogenous peroxidase activity	82
3.2.2.10.ii 0.5M Tris / HCl buffer	83
3.2.2.10.iii Phosphate buffered saline	83
3.2.2.10.iv Diaminobenzidine Tetrahydrochloride solution and	83

development solution

3.2.2.10.v Preparation of Carrazzi's haematoxylin	83
3.2.210.vi Immunohistochemistry Procedure for GST-P	84
3.2.211 Haematoxylin and Eosin (H & E) staining	86
3.2.2.11.i Preparation of Harris's haematoxylin	86
3.2.2.11.ii Preparation of Eosin	87
3.2.2.11.iii Preparation of acid alcohol	87
3.2.2.11.iv H & E staining procedure	88
3.2.3 Effects of decoction on tumour development	88
3.2.3.1 Experimental design	88
3.2.3.2 Silver impregnation for reticulin fibers	90
3.2.3.2.i Preparation of Ammonical Silver nitrate solution	90
3.2.3.2.ii Preapration of 1% Potassium permangenate solution	90
3.2.3.2.iii Staining method for Reticulin fibers	90
3.3 Toxicity study	91
3.3.1 Determination of LD_{50}	91
3.3.2 Effects on haematological parameters	92
3.3.2.1 Determination of red blood cell count	93
3.3.2.2 Determination of white blood cell count	94
3.3.2.3 Determination of differential count	95
3.3.2.4 Determination of packed cell volume	96
3.3.2.5 Determination of haemoglobin concentration	97
3.3.2.6 Calculation of erythrocyte indices	100
3.3.3 Effects on serum enzyme levels	100
3.3.4 Assessment of histological changes	103

3.3.5 Effects on body weight gain, feed consumption ratio and	103
body weight : liver weight ratio	
3.3.6 Effects on reproductive ability	104
3.3.6.1 Preparation of vaginal smears	104
3.3.6.2 Effects on ovulatory activity	104
3.3.6.3 Effects on implantation	105
3.3.6.4 Effects on spermatocytogenicity	105
3.4 Studies to determine mechanism of action	106
3.4.1 Immunological studie	106
3.4.2 Antioxidant studies	108
3.4.2.1 Assay for free radical scavenging activity	108
3.4.2.2 Superoxide dismutase (SOD, 1.15.1.1) assay	110
3.4.2.3 Glutathione peroxidase assay (GPX, 1.11.1.9)	112

4 RESULTS

4.1 Effects of the decoction on initiation and promotion of	113
hepatocarcinogenesis.	
4.2 Effects of treatment with decoction for 34 weeks on	119
DEN- mediated tumour development in rat livers.	
4.2.1 Post mortem findings	119
4.2.2 Haematoxylin and Eosin staining (H and E)	119
4.2.3 Silver impregnation for reticulin fibers	121
4.2.4 Immunohistochemistry staining for GST-P positive foci	121

COMMUNICATIONS AND PUBLICATIONS	х
REFERENCES	168
7 SUGGESTIONS FOR FUTURE STUDIES	167
6 CONCLUSIONS	166
5 DISCUSSION	154
and GPX (glutathione peroxidase) activity	
4.4.2.2 Effects on SOD (superoxide dismutase) activity	134
4.4.2.1 DPPH assay	133
4.4.2 Antioxidant effects	133
4.4.1 Immunological studies	133
decoction in tumour inhibition	
4.4 Studies to investigate possible mechanism of action of the	133
4.3.7.3 Anti-spermatocytogenic activity	126
4.3.7.2 Effects on implantation	125
4.3.7.1 Anti –ovulatory activity	125
4.3.7 Effects on reproductive ability	125
4.3.6 Histopathology	125
and body weight : liver weight ratio	
4.3.5 Effects of the decoction on feed consumption, body weight gain	125
4.3.4 Serum enzyme levels	124
4.3.2 Effects on haematological parameters	124
4.3.1 LD ₅₀ determination	124
4.3 Toxicological investigations of the decoction	124

viii

LIST OF TABLES

Table 1.1 Cancer mortality worldwide	1
Table 2.1 Differences between benign and malignant tumours	8
Table 2.2: Some known Growth Factors	13
Table 2.3: Some important viral carcinogens	28
Table 2.4: Tumour markers	33
Table 2.5: Diseases considered as maliganant in Ayurveda	41
Table 2.6: Plants used in Ayurveda for Cancer	44
Table 2.7: Plants with confirmed anti cancer activity	46
in the crude extract – by in vitro studies	
Table 2.8: Plants with confirmed anti cancer activity	48
in the crude extract- in vivo studies.	
Table 2.9: Plants with anti cancer activity	53
(active components isolated)-in vitro studies	
Table 2.10: Plants with anti cancer activity	55
(active components isolated)-in vivo studies.	
Table 2.11: Formulations used for cancer treatment	57
Table 3.1: Feed formulae for rat and mouse	72
Table 3.2: Serial dilution of the decoction for DPPH assay	109
Table 4.1: Number of DEN –induced GST-P positive foci	115
in livers of rats treated with the decoction or garlic for ten wee	ks.

Table 4.2: Area of DEN –induced GST-P positive foci in livers of rats116treated with the decoction or garlic for ten weeks.

Table 4.3: Number of DEN –induced GST-P positive cells in liver	117
of rats treated with the decoction or garlic for ten weeks.	
Table 4.4: A comparison of haematological parameters of rats control	127
group with rats treated with the decoction for one month.	
Table 4.5: Effects of decoction on serum enzyme levels after three	128
months of treatment.	
Table 4.6: Effects of the decoction on average feed consumption	129
average body weight gain and body weight: liver weight ratio.	
Table 4.7: Effects of the decoction on oestrus cycle	130
Table 4.8: Effects of decoction on implantation	131
Table 4.9: Effects of decoction on spermatocytogenic activity	132
Table 4.10: Effects of decoction on groups 1 (control) and 2	135
(test) lymphocyte markers	

Х

LIST OF FIGURES

Figure.2.1: Flow chart depicting a simplified scheme of cancer	10
pathogenesis	
Figure 2.2: Direct and indirect carcinogens	16
Figure 2.3: Actions of initiators and Promotors	21
Figure 2.4: The general scheme of events in chemical carcinogenesis	22
Figure 3.1: Assay method of short term study	76
Figure 3.2 a: Midline ventral incision	80
Figure 3.2 b: Mobilization of median and left lateral lobes	80
Figure 3.2 c: Severing two suspensory ligaments	80
Figure 3.2 d: Ligating the two liver lobes	80
Figure 3.2 e: Making several cuts on the liver	80
Figure 3.3: Assay method for long term study	89
Figure 3.4: Hb standard curve	99
Figure 4.1: Staining intensity of DEN-initiated liver GST-P positive	118
foci in Wistar rats treated with decoction or garlic for ten wee	ks.
Figure 4.2: Effects of decoction treatment for nine months on number	122
of GST-P positive cells of DEN-induced liver foci in Wistar rats.	
Figure 4.3: Effects of decoction treatment for nine months on number	123
of DEN induced GST-P positive foci in Wistar rats.	
Figure 4.4: DPPH assay of the decoction at various concentrations	136
Figure 4.5: Erythrocyte SOD activity of rats after nine months	137
of decoction treatment in group 1 (6g/kg body weight/day)	

when compared with the corresponding activity of DEN-control rats (group 2)

Figure 4.6: Plasma GPX activity of rats after nine months of decoction 138 treatment (6g /kg body weight/day) when compared with the corresponding activity of DEN-control rats (group 2).

LIST OF PLATES

Plate 1: Nigella sativa Linn.sp	68	
Plate 2: Hemidesmus indicus (L) R.Br.	69	
Plate 3:Smilax glabra Rox b.	70	
Plate 4: Immunohistochemical staining of DEN-induced	139	
glutathione S-transferase placental form positive (GST-P+) foci		
in Wistar rats		
Plate 5: H & E staining of normal liver, DEN-control liver and	142	
DEN + decoction treated liver of rats after 9 months of treatemnt		
Plate 6: H & E staining of liver adenoma found in DEN –control	144	
group after 9 months of decoction treatment.		
Plate 7: Silver impregnation staining for reticulin fibers in normal liver,	144	
DEN-control liver and DEN + decoction treated liver		
of rats after 9 months.		
Plate 8: Glutathione S-transferase P positive foci of rat livers treated	147	
with DEN only and DEN + decoction for 9 months		
Plate 9: H & E staining of heart sections from rats treated with	148	
decoction for 3 months and control rats treated with distilled wate	er	
Plate 10: H & E staining of lung sections from rats treated with	148	
decoction for 3 months and control rats treated with distilled water		
Plate 11: H & E staining of liver sections from rats treated with	150	
decoction for 3 months and control rats treated with distilled water		

- Plate 12: H & E staining of stomach sections from rats treated with
 151

 decoction for 3 months and control rats treated with distilled water
- Plate 13: H & E staining of duodenum sections from rats treated with152decoction for 3 months and control rats treated with distilled water

Plate 14: H & E staining of kidney sections from rats treated with153decoction for 3 months and control rats treated with distilled water

ACKNOWLEDEMENTS

My supervisors, Prof. (Mrs) S. M.D.N. Wickramasinghe, and Prof. (Mrs). M.I. Thabrew are deeply acknowledged for suggesting the topic and for their guidance and advice regarding laboratory investigations. Prof. (Mrs) S..M.D..N. Wickramasinghe is also greatly acknowledged for her encouragement, friendly supervision and creating stress less research environment. I also wish to express my foremost appreciation and gratitude to Prof. (Mrs). M.I. Thabrew, without whom this project might not have seen the end. Specially, this thesis would not have been made this beautifully without her. Thank you madam for all the hours you spent on this document.

My grateful thanks are due to Prof. N. Ratnatunge, Head of the Department, Department of Pathology, Faculty of Medicine, University of Peradeniya, Peradeniya, who stepped into the project at a time of great need, and without whose support and facilities at Department of Pathology, Faculty of Medicine, University of Peradeniya, the pathology aspects of the study could not have been completed.

My heartfelt gratitude to Dr. (Miss). Mayuri Thammitiyagodage, Veterinary Surgeon, Animal Centre, Medical Research Institute, (M.R.I), Colombo 08, who was also my coordinator at the M.R.I, for her assistance and guidance throughout the project and introducing me to my supervisors. Most of all I must thank her for all the fun we have had during the research period and for convincing me that work can be very enjoyable. My grateful thanks are due to Dr. (Mrs). Syamini Jayesekara, Head of the Department, Animal Centre, M. R.I, Colombo 08, who was like my unofficial supervisor at the M.R.I, trained me in handling and caring for laboratory animals, encouraged me and guided me in any difficult situation irrespective of the fact she is not directly involved in the project.

My gratitude also due to Dr. A. Weerasinghe, Department of Immunology, M.R.I, for the valuable guidance and providing monoclonal antibodies for the immunology experiments.

My sincere thanks to Dr. Nimal Jayathilake, Ayurveda Research Institute, Navinna, Maharagama, for providing the recipe for the formulation of this decoction and providing assistance whenever needed.

I also acknowledge with thanks the financial assistance given by the National Science Foundation, Colombo 07.

My heartiest gratitude goes to Prof. E. R. Janz, Prof. H. Peiris, Mrs. Sagarika Ekanayake, Ms. U. G. Chandrika and all the academic and non-academic staff members and all my fellow researchers at the Department of Biochemistry, Faculty of Medical Sciences, for the facilities provided and helping me in numerous ways to complete this project. My grateful thanks goes to Miss. Sujatha Ramadasa, Mr. K. Herath, and all the other technicians at the Department of Pathology, Faculty of Medicine, University of Peredeniya, Peradeniya and Mr. S. Sisira Kuamra, Mr. Jayasiri and all the animal supervisors and orderlies from the Animal Centre, M.R.I for technical assistance provided during the research period.

My gratitude also goes to Oushada Lanka (Pvt) Ltd., Katuwawala, for providing garlic powder.

Finally, I wish to thank my parents without whom this research would not have happened in the first place. For my mother, who encouraged me from the beginning and believed in me, without whose financial assistance, I would have given up the project long ago. For my father, who shouldered the massive task of collection of the raw materials for the preparation of the decoction daily for three years continuously, without as much as a comment.

Investigation of the effects of a traditional Sri Lankan Medicine on hepatocarcinogenesis

S. S. Iddamaldeniya

ABSTRACT

Hepatocellular carcinoma is among the eight leading causes of cancer deaths worldwide with a clear tendency to increase further. Therapeutic possibilities for this are very limited and prognosis is usually poor.

Several plant-based treatments are being recommended for cancer patients by traditional medical practitioners of Sri Lanka. However, none of these has been subjected to scientifically controlled investigation to validate their anti-cancer potential. One of these is a decoction comprised of *Nigella sativa* seeds, *Hemidesmus indicus* root and *Smilax glabra* rhizome.

In the present investigation protection against Diethylnitrosamine (DEN) –induced hepatocarcinogenesis was investigated in Wistar rats by the decoction using the medium term bioassay system of Ito, based on a two-step model of hepatocarcinogenesis. In previous studies, garlic has been shown to protect, rat liver against DEN-induced carcinogenesis. Therefore, it was used as a positive control in the present study.

Objectives of the investigation were to determine,

1. whether a decoction of *Nigella sativa*, *Hemidesmus indicus* and *Smilax glabra* inhibits glutathione S-transferase (GST-P) expression in rat liver.

2. whether this decoction has any anti-tumour potential.

3. whether this decoction has any toxic side effects.

4. the mechanism/s of action/s by which the decoction mediates its anti-tumour activity.

Four studies (Studies 1,2,3, and 4) were conducted to achieve the above four objectives. In study 1, the short-term effects of the decoction on GST-P+ expression in rat hepatocytes were investigated. Carcinogenic potential in study 1 was scored by comparing the number, area and staining intensity of GST-P positive foci and number of cells/cm² of the foci in the livers of rats treated with the decoction (test 1 and test 2) or garlic (positive control, control 2) for 10 weeks with those of the corresponding group (control 1) of rats given DEN and distilled water. Decoction dose 1 (4g/ kg body weight/day) corresponding to the normal therapeutic dose, was administered to the test group of rats, while dose 2, was given to the test 2 group of rats, provided a higher dose (6 g/kg body weight/day).

Treatment with decoction dose 1 reduced significantly, (a) the number and area of GST-P positive foci, (b) number of cells/cm² of foci, (c) staining intensity of GST-P positive foci (P<0.01) compared with animals in control 1. Treatment with decoction dose 2 resulted in a further significant reduction in the above parameters (P<0.001).

The reduction mediated by dose 2 was similar to that produced by garlic (20 mg/kg body weight/day).

In study 2, the effects of long-term treatment (for 9 months) of the decoction on tumour development were investigated. Two groups were used- DEN only treated group (DEN-control) and DEN+ decoction treated group (6g/kg body weight/day; test study). During the post mortem of rats after nine months, one hepatocellular adenoma (HA) was found in the DEN control group. Haematoxylin and Eosin staining of liver sections confirmed the HA and revealed altered hepatocyte nodules which may progress to HA. DEN and decoction treated group showed no HA. There were also very few nodules of altered hepatocytes which precedes HA. Reticulin stain was done to confirm the HA and to see whether it has progressed up to the hepatocellular carcinoma (HCC). DEN control group showed well-preserved reticulin framework of normal liver, which confirms that HA, has not yet progressed up to HCC. Test group showed expected normal liver reticular pattern.

Toxic effects of the decoction were investigated in study 3. Treatment with decoction dose 1 or dose 2 for three months had no adverse effects on the liver function (as assessed by its effects on serum levels of alanine and aspartate aminotrasnferase and alkaline phosphatase). Histopathological studies indicated that no significant histological changes had occurred in any of the major body organs (liver, kidney, lung, heart, stomach and duodenum) investigated.

No significant changes in haematological parameters (red blood cell count, white blood cell count, haemoglobin concentration, packed cell volume, mean corpuscular haemoglobin, mean corpuscular volume and mean corpuscular haemoglobin concentration) were observed during treatment with this decoction. The investigations also demonstrated that the decoction did not possess anti- ovulatory, anti-implantation, and anti-spermatocytogenic properties.

The LD_{50} study showed that even at a dose of 40 times the highest dose (6 g/kg body weight/day), used in other experiments of the study, the decoction did not cause any mortality. Long-term (3 months) treatment with the decoction did not cause any changes in average feed consumption, average body weight gain, and body weight : liver weight ratios and the general behaviour of the animals.

In study 4, preliminary investigations were carried out to determine possible mechanism of action by which the decoction mediates its anti-cancer effects. Tests done for anti-oxidant activity showed that the doction significantly increases the activity of blood glutathione peroxidase and superoxide dismutase (P<0.05) with little radical scavenging activity. Studies on immunomodulatory activity indicated that the decoction could stimulate production of T lymphocytes and NK cells (CD8 and NK receptors) although the results were not statistically significant.

Overall results indicate that the decoction comprised of *N. sativa* seeds, *H. indicus* root and *S. glabra* rhizome can protect against chemically induced hepatocarcinogenesis with no significant toxic effects even when it was

xxi

administered for a period of three months. Antioxidant activity and immunomodulation are two possible mechanisms by which the decoction mediates its anti-carcinogenic activity.