Isolation, identification and characterization of Microcystin degrading bacteria for water treatment solution

By

Fathima Sumaiya Idroos

A thesis submitted in fulfillment for the award of the degree

of

Doctor of Philosophy in Zoology

University of Sri Jayewardenapura

September 2015

CERTIFICATION OF SUPERVISORS

"We certify that the candidate has incorporated all corrections, additions and amendments

recommended by the examiners to this final version of the PhD thesis".

Supervisor:

Prof. Pathmalal Manage Professor of Zoology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura.

<u>16/05-116</u> Date

Co-Supervisor: Prof. B.G.D.N.K. De Silva Professor of Zoology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura.

16 05 2016

Date

Co-Supervisor: Dr.S.D.M. Chinthaka Senior lecturer Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura.

16/05/2016

Date

la tul MM

Profise attimulated Mi. it. Head / Department of Zeole-University of Sri Jayewarden Nugegoda Sri Lanka. Tel: 0112-804515

Signature

-

Signature

DECLARATION OF STUDENT

I declare that the work presented in this thesis is my own, except where otherwise acknowledged, and has not been submitted in any form for another degree or qualification at any other academic institution. The work described in this thesis was carried out under the supervision of Prof.M.M.Pathmalal as the chief investigator while Prof.B.G.D.N.K. De Silva and Dr. S.D.M. Chinthaka were the co-supervisors.

F. Sumaiya IdroosDepartment of ZoologyUniversity of Sri JayewardenepuraSri Lanka

DECLARATION OF SUPERVISOR

I certify that the above declaration made by the candidate is true and that the work presented in this thesis was undertaken with my supervision. Furthermore, thesis writing was also guided by me.

MM lonling Ito: 15. Ito Prof. Pathmalal M. Manage: Head / Department of Zoology University of Sri Jayewardenepura Nugegoda

Prof.M.M.Pathmalal Department of Zoology University of Sri Jayewardenepura Sri Lanka

DECLARATION OF CO-SUPERVISOR

I certify that the above declaration made by the candidate is true and that the work presented in this thesis was undertaken with my supervision. Furthermore, thesis writing was also guided by me.

Prof. B.G.D.N.K.De Silva Department of Zoology University of Sri Jayewardenepura Sri Lanka

DECLARATION OF CO-SUPERVISOR

I certify that the above declaration made by the candidate is true and that the work presented in this thesis was undertaken with my supervision. Furthermore, thesis writing was also guided by me.

. . . .

Dr. S.D.M.Chinthaka Department of Chemistry University of Sri Jayewardenepura Sri Lanka

Table of Contents

Table of contents	V11
List of tables	xii
List of figures	xiii
List of figure plates	xv
Abbreviations	xvi
Acknowledgement	xii
Abstract	xiii
CHAPTER 1 – INTRODUCTION	1
1.1 Origin and distribution of cyanobacteria	1
1.2 Occurrence of cyanobacterial blooms	3
1.3 Harmful effects of cyanobacterial blooms	7
1.3.1 Environmental and water quality issues	7
1.3.2 Health impacts of cyanobacteria blooms	9
1.4 Cyanotoxins	11
1.4.1 Cyclic peptide hepatotoxins – Microcystins (MCs) and Nodularin (NOD)	13
1.5 World scenario of cyanotoxin exposure	17
Objectives	22
Hypothesis	23
CHAPTER 2 - LITERATURE REVIEW	24
2.1 Occurrence of nuisance Cyanobacteria and Microcystins in reservoirs of Sri Lanka	24
2.2 Current Treatment Technologies for Microcystins	27
2.1.1 Physical removal method of Microcystins	27
2.1.2 Chemical treatment methods for Microcystin removal	29
2.1.3 Natural degradation of MCs	31

CHAPTER 3 - MATERIALS AND METHODS	41
3.1 Field studies	41
3.1.1 Study area: Reservoir and Watershed Characteristics	41
3.1.2 Sampling	42
3.1.2 a Chemicals	43
3.1.2 b Instruments used	44
3.2 Laboratory studies	45
3.2.1 Measurement of chemical parameters	45
3.2.2 Identification and enumeration of phytoplankton	46
3.2.3 Extraction and quantification of MCs	46
3.2.3a Filter method	46
3.2.3b Centrifugation method	47
3.2.3c Extraction of dissolved MCs	48
3.2.3d Quantification of MCs and development of	
standard plots	49
3.2.4 Isolation of MC degrading bacteria	49
3.2.4a Enrichment studies	49
3.2.4b Isolation of bacteria through enrichment studies .	50
3.2.4c Storage of bacteria	50
3.2.4d Regular processing and sub-culturing of bacteria	50
3.2.5 Screening of MCs degrading bacteria	51
3.2.5a Preparation of bacterial inocula	51
3.2.5b BIOLOG MT2 plate assay	51
3.2.5c Study of degradation kinetics	
3.2.6 Tentative identification of MC-LR degraders by Biocher	mical tests53
3.2.6a Gram strain of bacteria	

3.2.6b Citrate test	54
3.2.6c Starch hydrolysis	54
3.2.6d Catalase test	55
3.2.6e Urease test	55
3.2.6f Methyl red test (MR)	55
3.2.6g Vogus proskauer test (VP)	.55
3.2.6h Indole test	56
3.2.6i Gelatin hydrolysis test	56
3.2.6j Lactose Fermentation test	56
3.2.7 Phylogenetic Identification of bacteria	56
3.2.8 Optimization of bacterial degradation of MC-LR at	
different temperatures, nitrates and phosphate concentrations	.57
3.2.8a Study of effect of temperature on bacterial degradation	57
3.2.8b Effect of phosphate and nitrate concentration on MC-LR	
3.2.8b Effect of phosphate and nitrate concentration on MC-LR Degradation	57
Degradation	58
Degradation	58 58
Degradation	58 58 61
Degradation	58 58 61 61
Degradation	58 58 61 61 61
Degradation	 58 58 61 61 61 62
Degradation	 58 58 61 61 61 62 64
Degradation	 58 58 61 61 61 62 64 64
Degradation	 58 58 61 61 61 62 64 64 64 66

4.1.2 Principle component analysis (PCA) of Physico-chemical and
biological parameters of sampled water bodies
4.1.3 Similarities and dissimilarities between water bodies
4.1.4 Occurrence of MC-LR and effect of physico-chemical parameters77
4.1.5 Phytoplankton composition of water bodies79
4.2 Laboratory studies
4.2.1 Extraction and quantification of MCs and NOD85
4.2.2 Isolation of potential bacterial strains through enrichment studies89
4.2.3 Screening of MC-LR degrading bacteria90
4.2.4 Study of degradation kinetics of bacteria97
4.2.5 Gram stain and biochemical tests105
4.2.6 Phylogenetic identification of bacteria strains
4.2.7 Effect of water temperature on bacterial degradation of MC-LR107
4.2.8 Effect of nutrients on degradation of MCs110
4.2.9 Biodegradation of multiple MCs and NOD113
4.2.10 Presence of mlrA, mlr B, mlr C and mlrD
genes in isolated bacteria118
4.2.11 Development of a substrate to attach bacteria
4.2.12 Development of laboratory scale sand filter124
4.2.13 Use of bacterial enzymes for the removal of MCs126
CHAPTER 5 - CONCLUSION
CHAPTER 6 - REFERENCES
APPENDICES
Appendix 1-Publications158
Appendix 2-Sri Lankan Water quality guidelines 2013161
Appendix 3- Determination of total phosphate

Appendix 4- Determination of nitrate	167
Appendix 5- Determination of chlorophyll a	169
Appendix 6 – Standard plots for Microcyctins and Nodularins	172
Appendix 7 – Medium preparation for biochemical tests	174
Appendix 8 – Turkey's test results of comparing water bodies	

LIST OF TABLES

Table 1.1 Alert levels for cyanobacterial blooms
Table 1.2 Frequencies of mass occurrences of toxic cyanobacteria in freshwaters
Table 1.3 Cyanotoxins in nature
Table 1.4 Variation of amino acid on some selected MCs
Table 2.1 Microcystin contamination status of some selected water bodies in Sri Lanka
Table 2.2 Microcystin and nodularin degrading bacteria modified bacteria
Table 3.1 Types and user categories of the reservoirs subjected to present study42
Table 3.2 Details of instruments used for the study44
Table 3.3 Water quality parameters used, respective abbreviations and units and methods of analysis
Table 3.4 Forward and reverse Primer sequences used for the detection of mlr gene cluster
Table 3.5 Filter design, material and operating conditions of the sand filter column
Table 4.1 Physico-chemical parameters and Biological parameters of studied water bodies
Table 4.2 Pearsons correlation coefficient between water quality parameters and MC-LR concentrations
Table 4.3 Phytoplankton composition of studied water bodies
Table 4.4 Number of bacterial strains isolated from each water body
Table 4.5 Half life time of isolated bacterial strains
Table 4.6 Gram identification of bacterial strains 105
Table 4.7 Biochemical test results of bacterial strains 105

LIST OF FIGURES

Figure.1.1 Harmful effects of cyanobacterial blooms5
Figure 1.2 Cyclic structure of Microcystin-LR15
Figure 1.3 Cyclic structure of Nodularin
Figure 2.1 Proposed MC-LR degradation pathways
Figure 2.2 <i>mlr</i> gene clusters indicating the presence of <i>mlrA</i> , <i>mlrB</i> , <i>mlrC</i> and <i>mlrD</i> genes
Figure 3.1 Schematic diagram for the extraction of intracellular MCs using the filter method
Figure 3.2 Schematic diagram for the extraction of intracellular MCs using the centrifugation method
Figure 3.3 BIOLOG MT2 plate to screen bacterial degradation of MC-LR52
Figure 3.4 Structure of the Sand filter
Figure 4.1 PCA plot for physico-chemical and biological parameters of sampled water bodies
Figure 4.2 Loading plot for physico-chemical and biological parameters of sampled water bodies
Figure 4.3 (a) UV chromatogram at (200-300 nm), (b) UV spectrum 238 nm with relative purity > 95% of MC-LR
Figure 4.4 (a) UV chromatogram at (200-300 nm), (b) UV spectrum 238 nm with relative purity > 95% of of MC-LF
Figure 4.5 (a) UV chromatogram at (200-300 nm), (b) UV spectrum 238 nm with relative purity > 95% of MC-LW
Figure 4.6 (a) UV chromatogram at (200-300 nm), (b) UV spectrum 238 nm with relative purity > 95% of MC-RR
Figure 4.7 (a) UV chromatogram at (200-300 nm), (b) UV spectrum 238 nm with relative purity > 95% of NOD
Figure 4.8 BIOLOG MT2 plate wells showing positive wells in purple and negative wells colorless
Figure 4.9 BIOLOG screen for MC-LR metabolism by 12 bacterial strains at 24 h of incubation with three MC-LR concentrations and controls

Figure 4.10a BIOLOG screen for MC-LR metabolism by 6 bacterial strains at 0,3,6,15,18,24 and 48 h of incubation with three MC-LR concentrations and controls
Figure 4.10b BIOLOG screen for MC-LR metabolism by 6 bacterial strains at 0,3,6,15,18,24 and 48 h of incubation with three MC-LR concentrations and controls
Figure 4.11 Degradation kinetics of selected bacterial strains
Figure 4.12 Chromatograms of MC-LR degradation by (a)12GK, (b) 4B4,1 (c) JAY and (d) 13UL strains
Figure 4.13 Evolutionary relationships of taxa <i>Stentrophomonas</i> , <i>Bacillus</i> and <i>Rahnella</i>
Figure 4.14 Degradation of MC-LR by bacterial strains at different temperatures
Figure 4.15 Degradation of MC-LR by all four bacterial in the presence of Phosphate
Figure 4.16 Degradation of MC-LR by all four bacterial in the presence of Nitrates
Figure 4.17 Degradation of a cocktail mixture117
Figure 4.18 PCR bands obtained for the presence of <i>mlr</i> gene cluster in isolated bacterial strains
Figure 4.19a Optical densities of different substrates used for attachment of bacteria
Figure 4.19b Optical densities of different substrates used for attachment of bacteria
Figure 4.20 MC-LR removal percentages through experimental and control sand filter setups
Figure 4.21 MC-LR removal percentage by extracellular enzyme extracts

LIST OF FIGURE PLATES

Plate 1- Microcystin producing bacterial strains	132
Plate 2- Biochemical tests	133
Plate 3- Laboratory scale sand filter	135

ABBREVIATIONS

Advanced Oxidation Processes	AOP
Cylindrospermopsin	CYN
deoxy-cylindrospermopsin	doCYN
Deoxy ribo nucleic acid	DNA
High Performance Liquid Chromatography	y HPLC
Microcystin-LR	MC-LR
Microcystins	MCs
National water supplies and drainage board	d NWSDB
Nodularins	NOD
Non-ribosomal Polypeptide	NRPS
Powdered activated carbons	PAC
Protein Phosphatases Types 1 A	PP1
Protein Phosphatases Types 2 A	PP2
Reverse osmosis	RO
Room temperature	RT
Slow sand filtration	SSF
Total nitrogen	TN
Total phosphate	TP

ACKNOWLEDGEMENTS

I would like to extend my heart filled gratitude to my principal investigator Prof.

Pathmalal M Manage for guiding me all the way from my bachelor's degree up to my doctorate. I also would like to thank my supervisors Prof. B.G.D.N.K De Silva and Dr. S.D.M Chinthaka for their immense support, guidance given to me throughout this project.

My heartiest gratitude to goes to all lecturers of Department of Zoology, University of Sri Jayewardenepura for creating a most supportive and friendly environment within the Department to carry out the research work.

I also extend my sincere thanks to Prof. Linda Lawton, Dr. Christine Edwards and Dr. Aakash Welagamge (Robert Gordon University, United Kingdom) for their great support provided to me during the International workshop on Cyanotoxin analysis.

I am also very grateful to Mr. Ishara Rathnayake, Senior researcher, Genetech, Sri Lanaka for guiding me to work out with sequencing studies. My thanks also go to the Industrial technology institute of Sri Lanka for helping in freeze drying of samples.

I would also like to extend a word of gratitude to the National research council of Sri Lanka, for granting me the funds in order to complete my study.

My heartiest gratitude to Mrs. Indika De Silva, Ms.Yashodara Liyanage, Mr.Yohan Mahagamage, Mr. Manoj Wijesekara and Ms. Poorna Piyathilake of Algae and water quality laboratory, University of Sri Jayewardenepura for being with me all the time in need providing the support and courage through out my research period.

I am extremely grateful to my Mum, late Dad not only for their love but for the opportunities they have given me along the way. Last but not least I am very much thankful for my loving husband for being the greatest pillar of my strength and being there for me whenever I need.

Isolation, identification and characterization of Microcystin degrading bacteria for water treatment solution

Fathima Sumaiya Idroos

ABSTRACT

Microcystin –LR (MC-LR) is considered to be the most dominant type of MCs present in Sri Lankan water bodies. Hence, there is a significant interest in water treatment strategies that ensures the removal of MCs, with the exploitation of microbes, which is considered to be a possible environmental friendly approach. Detection of MC-LR concentration and isolation of potential MC-LR degraders were carried out in 25 water bodies of Sri Lanka from 1st September 2011 to 31st August 2014. The highest MC-LR concentration was recorded from Girandurukotte reservoir as 158.9 \pm 4.71 µg ml⁻¹. A total of 386 bacterial strains were isolated from all water bodies and out of them four isolates namely, *Bacillus cereus* (12GK), *Stenotrophomonas maltophilia* (4B4 and 1 JAY) *and Rahnella aqautilis* (13UL) have shown an overall metabolism of MC-LR. This is the first report of MC degrading *R.aquatilis* belonging to class gammaproteobacteria.

B.cereus, the most efficient MC-LR degrading bacterium showed 100 % removal of MC-LR within eight days of incubation at 28^oC where both *S. maltophilia* species and *R.aqautilis* showed 100 % removal of MC-LR within 10 days of incubation. Highest metabolism of MC-LR by all four bacterial strains was shown at 32^oC. *B.cereus* showed 100 % removal of MC-LR, at the end of 6th day of incubation at 32^oC. *S. maltophilia* and *R. aqautilis* required 8 days to show 100 % removal of MC-LR at 32^oC. MC-LR degradation efficiency of each bacterial strain was optimized at different concentrations

of Phosphates (0.005 ppm to 0.05 ppm) and nitrates (0.1ppm to 2.5 ppm). MC-LR degradation rate of B. cereus and R. aquatilis increased from $0.43\pm0.05 \ \mu g \ day^{-1}$ to 0.94 $\pm 0.15 \ \mu g \ dav^{-1}$ and from $0.38\pm 0.01 \ \mu g \ dav^{-1}$ to $0.56 \pm 0.17 \ \mu g \ dav^{-1}$, respectively when phosphate concentration was increased from 0.005 to 0.01ppm. Phosphate concentrations higher than 0.01ppm resulted a decrease in MC-LR degradation rate of B. cereus and R. aquatilis. S. maltophilia showed highest MC-LR degradation rate of $0.34\pm0.01 \ \mu g \ day^{-1}$ (4B4) and $0.38\pm0.002 \ \mu g \ day^{-1}$ (1 JAY) respectively when total phosphate concentration of the medium was increased up to 0.02 ppm and higher levels of phosphate showed a decrease in degradation of MC-LR. A rapid degradation of MC-LR was recorded by all four strains, with the increase of nitrate concentration in the medium from 0.1 to 0.4 ppm. MC-LR degradation rate for B.cereus increased from $1.76\pm0.05 \ \mu g \ day^{-1}$ to $3.98 \pm 0.15 \ \mu g \ day^{-1}$; In S. maltophilia, 4B4 and 1 JAY, MC-LR degradation rate increased from 1.98±0.17 μ g day⁻¹ to 3.55 ±0.18 μ g day⁻¹ and from $1.78\pm0.03 \ \mu g \ day^{-1}$ to $3.76\pm0.06 \ \mu g \ day^{-1}$ respectively, where as in *R. aquatilis* MC-LR degradation rate increased from $1.86\pm0.05 \ \mu g \ day^{-1}$ to $3.55\pm0.11 \ \mu g \ day^{-1}$. Nitrate concentrations higher than 0.4ppm reduced MC-LR degradation rates of all strains Moreover, all four bacterial strains showed abilities to degrade other MC variants (MC-LF, MCLW, MC-RR) and Nodularin (NOD). B. cereus acted as the predominant degrader of MC-LR and MC-LF showing a complete degradation of these toxin variants within eight and twelve days of incubation respectively. Both S .maltophilia strains (4B4 and 1JAY) showed a complete removal of MC- LR, MC-RR and MC - LF within 10, 12 and 14 days of incubation accordingly. However, R. aquatilis showed a complete degradation only for MC- LR within 10 days of incubation.

The molecular studies confirmed that all four bacterial strains harbor *mlrA*, *mlrB*, *mlrC* and *mlrD* genes in them. This confirms that these bacterial strains follow the traditional pathway of MC-LR degradation and break the toxic compound into non harmful products. Moreover, a sand filter was also developed incorporating the best degrader of MCs. Biofilm of the sand filter was developed by attaching bacteria into citric acid treated raw cotton. MC-LR elimination potential of sand filters was experimented using two full-scale sand filters: an experimental sand filter and a control sand filter. The control filter showed a 1% removal of MC-LR within three hours and 12% removal after four days. The experimental filter showed 3% removal of MC-LR within three hour of incubation and 90% removal of by the end of four days. Therefore, present study has provided a potential solution to treat Microcystin contaminated water by exploiting environmental bacteria.