Analysis of the genetic variation of the *An. culicifacies* and *An. subpictus* complexes in Sri Lanka using DNA based techniques

By

Walakada Gamage Shiromi Ariyawansha

Thesis submitted to the University of Sri Jayewardenepure for the award of the Degree of Master of Philosophy in Zoology On 30th August 2005.

Declaration by the candidate

The work described in this thesis was carried out by me under the supervision of Dr. B. G. D. N. K. de Silva, Prof. E. H. Karunanayeke and Prof. S. Fernando and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

and Saoon

Signature of the candidate

Declaration by supervisors

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Name of the supervisor

Signature of the supervisor

Dr. B. G. D. N. K. de Silva Senior lecturer, Department of Zoology, Faculty of Life Science, University of Sri Jayewardanapura.

Prof. E. H. Karunanayeke Director, Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo.

June 2

Prof. S. Fernando Head, Department of Microbiology, Faculty of Medicine, University of Sri Jayewardenepura.

I. TABLE OF CONTENTS

		Page
		no.
I.	TABLE OF CONTENTS	i
II.	LIST OF TABLES	v
III.	LIST OF FIGURES	vi
IV.	LIST OF ABBREVIATIONS	viii
V.	ACKNOWLEDGEMENTS	x
VI.	ABSTRACT	xii
1.	INTRODUCTION	01
1.1	Out line of the present study	05
2.	LITERATURE REVIEW	07
2.1	Global malaria problem	08
2.2	Malaria in Sri Lanka	08
	2.2.1 Malaria vectors in Sri Lanka	13
2.3	Prospects of Conquering Malaria	13
	2.3.1 Vaccines	13
	2.3.2 Medicines	16
	2.3.3 Mosquito Research	18
2.4	Strategy of malaria vector control	18
	2.4.1 Chemical measures	19
	2.4.2 Bio-environmental measures	20
	2.4.3 Biotechnological measures	21
2.5	Malaria vector control strategies in Sri Lanka	22
2.6	Analysis of the vector at species and intra-species level	23
	2.6.1 Definition and designation	23
	2.6.1 Importance in identification of sibling species status	24
2.7	Techniques used in recognition of species complexes	25

	2.7.1 Morphological variations	25
	2.7.2 Cuticular hydrocarbon profile	25
	2.7.3 Cross-breeding experiments	26
	2.7.4 Cytogenetic techniques	26
	2.7.4.1 Mitotic and meiotic karyotypes	26
	2.7.4.2 Examination of polytene chromosomes	27
	2.7.5 Electrophoretic variation	27
	2.7.6 DNA based techniques	29
	2.7.6.1 Diagnostic DNA probes	29
	2.7.6.2 Polymerase Chain Reaction (PCR) based	30
	techniques	
	2.7.6.3 Restriction Fragments Length Polymorphism (RFLP)	31
	2.7.6.4 Single-Strand Conformation Polymorphism (SSCP)	31
2.8	Most important malaria vectors in Sri Lanka	32
	2.8.1 Anopheles culicifacies complex	32
	2.8.2 Anopheles subpictus complex	37
2.9	Organization and complexity of the mosquito genome	39
	2.9.1 Genome size	41
	2.9.2 Evolution and Molecular Archaeology	42
	2.9.3 Repetitive DNA sequences	43
	2.9.4 Ribosomal gene	44
3.0	MATERIALS AND METHODS	48
3.1	General buffers, reagents and stock solutions	48
3.2	Mosquitoes and Mosquito DNA	49
	3.2.1 Mosquitoes	49
	3.2.2 Mosquito DNA	49
	3.2.2.1 Reagents, buffers and enzymes for mosquito DNA extraction	49
	3.2.2.2 Mosquito DNA extraction	51
3.3	Polymerase Chain Reaction (PCR)	53
3.4	Cloning of the PCR products	55

	3.4.1 Reagents, buffers, enzymes culture media, bacteria and	55
	plasmid for cloning	
	3.4.2 Preparing the PCR fragment for cloning	58
	3.4.3 Preparing the plasmid vector for cloning	60
	3.4.4 Ligation of the PCR fragment to the vector	60
	3.4.5 Transformation	61
	3.4.5.1 Making competent cells	61
	3.4.5.2 Transformation of plasmid to XL 1 Blue MRF	62
3.5	Plasmid DNA extraction	63
	3.5.1 Reagents, buffers and enzymes for plasmid DNA extraction	63
	3.5.2 Mini preparation of plasmid DNA using alkaline lysis method	64
3.6	DNA sequencing	65
	3.6.1 Reagents, buffers and stock solutions for sequencing	65
	3.6.2 Sequencing of Internal Transcribed Spacer 2	66
3.7	Anopheles culicifacies B and E squash blot hybridization with Rp36,	67
	Rp234 DNA probes	
	3.7.1 Reagents, buffers and stock solutions for DNA probe method	67
	3.7.2 Mosquito squash blots	68
	3.7.3 Preparation of ³² P labelled DNA probes	68
	3.7.4 Pre hybridization and hybridization of nitrocellulose filter	69
4.	RESULTS AND DISCUSSION	71
4.1	PCR amplification of ITS2 region	71
4.2	Sequencing of amplified products	73
	4.2.1 Sequences of Internal Transcribed Spacer 2 (ITS2) of Anopheles culicifacies B and E	73
	4.2.2 Sequences of Internal Transcribed Spacer 2 (ITS2) of Anopheles subpictus A B C and D	73

4.3	Analysis of ITS2 sequences	76
	4.3.1 Analysis of ITS2 sequences of An. culicifacies s.l.	76
	4.3.2 Analysis of ITS2 sequences of An. subpictus s.l.	91
4.4	Manipulation of species specific DNA probes for differentiation of <i>An. culicifacies</i> E from B	96

5. CONCLUSIONS

100

6. **REFERENCES**

102

II. LIST OF TABLES

F)	2	1	2	50	e

		no.
Table 2.1	Secondary anopheline vectors in Sri Lanka	14
Table 2.2	Available Taxanomic Tools for identification of An. culicifacies	34
	species complex	
Table 2.3	Morphological, biological and cytological differences of Anopheles	38
Table 2.4a	Percentages of sibling species of An. subpictus complex caught	40
	within the same time period in Chilaw area	
Table 2.4b	Variation of population densities between coastal habitats and	40
	inland habitats among members of An. subpictus complex	
Table 2.5	Genome size in four mosquito species	41
Table 2.6	Genome size of various Anopheles species	42
Table 4.1	Nucleotide composition of ITS2 region of An. culicifacies	79
	complex	
Table 4.2	Nucleotide mismatches of the An. culicifacies complex against	80
	sibling species A from India	
Table 4.3	Restriction cleavage sites within ITS2 of An. culicifacies complex	83
Table 4.4a	Free energy values of predicted secondary structures of ribosomal	88
	DNA second internal transcribed spacer from An. culicifacies	
	comple	
Table 4.4b	Positions displayed nucleotide mismatches of second internal	88
	transcribed spacer of An. culicifacies complex	

III. LIST OF FIGURES

The Life Cycle of Anopheles mosquito.

Figure 1.1

Page no.

02

0		-
Figure 1.2	The Life Cycle of Malaria Parasites in Mosquito	03
Figure 2.1	Distribution of malaria in the world	09
Figure 2.2	Sites of vector incrimination studies	10
Figure 2.3	Trends of annual parasite incidence	12
Figure 2.4	Anti-malarial drugs in use worldwide	17
Figure 2.5	Polytene chromosome banding patterns among An. culicifacies	28
	species complex	
Figure 2.6	Multiple blood feeding of An. culicifacies	35
Figure 2.7	Ribosomal RNA gene cluster	47
Figure 3.1	Electrophoresis of genomic DNA	52
Figure 3.2	Electrophoresis of genomic DNA	53
Figure 3.3	Pictorial illustration of molecular cloning	57
Figure 3.4a	Plasmid Blue script and the multiple cloning site	59
Figure 3.4b	Multiple cloning site and the annealing sites for the universal primers	59
Figure 4.1	Electrphoresis of PCR fragments of An. culicifacies and An.	72
	subpictus ITS2	
Figure 4.2.1	Aligned sequences of Sri Lankan An. culicifacies B and E	74
	containing partial sequence of 5.8s, ITS2 and partial sequence	
	of 28s.	
Figure 4.2.2	Alignment of ITS2 sequences of An. subpictus complex	75
Figure 4.3.1	Alignment of all available ITS2 sequences of An. culicifacies	77
	complex	
Figure 4.3 2	Conserved areas of Second Internal Transcribed Spacer of	82

An. culicifacies complex

Figure 4.3.3	Phylogenetic trees of An. culicifacies complex	84
Figure 4.3.4	Phylogram of An. culicifacies complex inferred from nucleotide	86
	sequences of second internal transcribed spacer.	
Figure 4.3.5	Predicted RNA secondary structures of second internal	87
	transcribed	
	spacer of An. culicifacies complex.	
Figure 4.3.6	Predicted RNA secondary structures from extended sequences	90
	of	
	second internal transcribed spacer of An. culicifacies complex	
Figure 4.3.7	Alignment of the sequences of ribosomal DNA second internal	92
	transcribed spacer of An. subpictus species complex.	
Figure 4.3.8a	Phylogenetic tree inferred from sequences of second internal	93
	transcribed spacer of An. subpictus complex	
Figure 4.3.8b	Heights of nodes and the lengths of branches of the	94
	phylogenetic tree of An. subpictus species complex	
Figure 4.3.9	Phylogram of An. subpictus based on the comparison of second	95
	internal transcribed spacer	
Figure 4.4	Hybridization of squash blot with Rp 36	99

IV. LIST OF ABBREVIATIONS

A.M.C Anti Malaria Campaign ATP Adenosine Tri Phosphate BSA Bovine Serum Albumin Calcium Cloride CaCl₂ CDC Centre for Disease Control DDT Dichloro diphenyl trichloroethane DTT Dithiothreitol DMSO Dimethylsulphoxide DNA Deoxyribose Nucleic Acid dNTP Deoxy Nucleotide Tri Phosphate DoD Department of Defence(USA) EDTA Ethylenediaminetetraacetic Acid ELISA Enzyme Linked Immunosorbant Assay GMT Greenwich Median Time hr hour IAA Isoamyl Alcohol IPTG Isopropyl beta-D-thiogalactopyranoside 2nd Internal Transcribed Spacer ITS2 Kb Kilo base LB Luria Bertani medium MgCl₂ Magnesium Chloride

MgSO ₄	Magnesium Sulphate
mM	Mili Molar
NaCl	Sodium Chloride
ng	Nano Grams
NIAID	National Institute of Allergy and Infectious Diseases
NTS	Non Transcribed Spacer
OD	Optical Density
PBS	Plasmid Bluescript
RNA	Ribose Nucleic Acid
SDS	Sodium Dodecyle Sulphate
SSC	Standard Saline Citrate
TAE	Tris Acetate EDTA
TBE	Tris Borate EDTA
TE	Tris EDTA
TEMED	N, N, Ntetramethylethylenediamine
Tris	Tris (hydroxymethyl) aminomethane
Rp	Repetitive (sequence)
rpm	revolutions per minute
U	Unit
USAID	United States Agency for International Development
WHO	World Health Organisation
X-gal	5-bromo-4-chloro-3-indolyl beta-D-galacto pyranoside
μg	Microgram
μl	Micro litres

V. ACKNOWLEDGMENTS

First of all I am very grateful to Dr. Maya Gunesekara for teaching me ABC of molecular biology and showing me the way to the research field.

I express my deep gratitude to Professor Eric H. Karunanayeke, for being a kind supervisor for me and making arrangements for me to work in Department of Molecular Biology and Biochemistry, Faculty of Medicine, University of Colombo and as well as in the Institute of Biochemistry, Molecular Biology and Biotechnology (IBMBB).

I express my grate gratitude to my supervisor Dr. Nissanka de Silva for his wonderful guidance for the completion of the research by being chief scientific investigator and his valuable encouragements at my difficult moments.

I am very grateful to Professor Sirimalee Fernando for her advice and support as a supervisor in this study.

I would like to thank Mr. Nobel Surendren, Ms. Chammi Munesinge, Ms. Gayathri Weerasuriya and Mr. T.A. Abhayawardana for providing me specimens for this study.

I wish to thank the staff of Faculty of Graduate studies, University of Sri Jayewardenepura for helping me in the administrative problems arose in the period of research study.

Thanks are also due to the staff of the Department of Zoology, Faculty of Applied sciences, University of Sri Jayewardenepura for their kind assistance.

I thank the research group of IBMBB for helping me in numerous occasions with my work.

I would like to thank the technical staff of Department of Molecular Biology and Biochemistry, Faculty of Medicine, University of Colombo and the technical staff of IBMBB, specially Mr. C.S.P. Abeysinghe for his technical assistance throughout the study.

I remind the financial support that received from National Science Foundation under the grant SIDA/98/BT/03 for the first two years of this study and then this work is supported by Swedish Agency for the Cooperation with Developing countries (SAREC) grant for the Capacity building in Biotechnology and International programme in Chemical Sciences (CBICS), University of Uppsala, Sweden.

Analysis of the genetic variations of the *Anopheles culicifacies* and *Anopheles subpictus* complexes in Sri Lanka using DNA based techniques by

Walakada Gamage Shiromi Ariyawansha

ABSTRACT

Anopheles culicifacies s.l. is the major vector while Anopheles subpictus s.l. is the most important secondary vector of malaria in Sri Lanka. An. culicifacies is known to exist as a complex of five sibling species A, B, C, D and E in India, the neighbouring country. Karyotyping has revealed the presence of An. culicifacies B and E sympatric in Sri Lanka. Previous studies revealed that in Sri Lanka, sp. E is predominant and act as the vector while sp. B is less common and act as a non vector or is having a least vector potential. An. subpictus complex consists at least of four sibling sp. naming A, B, C and D those who could be differentiated by morphological characteristics of eggs, larvae and adults. All the members of this complex are present in Sri Lanka. Sp. B prefers saline water and sp. D prefers fresh water while sp. A and C don't show any preferences.

Cloned Polymerase Chain Reaction (PCR) fragments of the ribosomal Deoxyribonucleic Acid (DNA) second internal transcribed spacer of available members of above species complexes were sequenced. Sequences of two complexes were analysed separately using Bio Edit Sequence Alignment Editor 6.0.5. Previously developed DNA probes were manipulated to check any difference in hybridization between *An. culicifacies* B and E DNA.

An. culicifacies B and E had identical ITS2 sequences. Phylogenetic tree generated using ITS2 sequences of *An. culicifacies* complex available in the web revealed that members of the complex evolving in two different lines: sp. A and D in a one lineage and sp. B, C and E in the other. Secondary structure predictions from their ITS2 region showed identical folding patterns among B, C and E as well as very similar secondary structures of A and D. Structural analogy of those secondary structures showed a functional stability of ITS2 region among *An. culicifaies* complex which led to a slow evolution rate of that region. Therefore, it is difficult to display genetic variation through analysis of ITS2 of *An. culicifacies* complex. Also hybridization with the DNA probe exhibited a similar pattern between sp. B and E.

An. subpictus complex could be categorized into two groups based on PCR assay: sp. A and C into one group and B and D into the other. Different ITS2 sequences could be seen among members. Sp. B could be clearly separated from sp. A, C and D based on the ITS2 sequence dissimilarities. Phylogenetic tree showed that An. subpictus B is evolving in a separate evolutionary line and could easily distinguish from other members of the complex.