# ANTIDIABETIC COMPOUNDS FROM MEDICINAL PLANTS USED IN THE INDIGENOUS SYSTEM OF MEDICINE ('DESHIYA CHIKITSA') IN SRI LANKA

By

## Malitha Aravinda Siriwardhene



Thesis submitted to the University of Sri Jayewardenepura

for the award of the Degree of Master of Philosophy in

Pharmacology in August 2014

We certified that the candidate has incorporated all corrections, amendments and additions recommended by the examiners.

Dr. A. K. E. Goonetilleke

Dr. G. A. Sirimal Premakumara

Unh Date 15/06/2015 Min Date 15/06/2015 Date 15/06/2015

#### DECLARATION

"The work described in this thesis was carried out by me under the supervision of Dr. A. K. E. Goonetilleke, Senior Lecturer, Department of Pharmacology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda and Dr. G. A. Sirimal Premakumara, Research fellow and former Director, Industrial Technology Institute, Colombo 7 and a report on this has not been submitted in whole or in part to any university or any other institution for anther Degree/Diploma".

15/06/2015

Date

Signature

"I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation".

15/06/2015

...

Date

litule

Dr. A. K. E. Goonetilleke Senior Lecturer. Dept. of Pharmacology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda. "I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation".

15/06/2015

4 ing . . . .

Date

Dr. G. A. Sirimal Premakumara

(Research Fellow)

#### CONTENTS

| LIST OF TABLES        | vi  |
|-----------------------|-----|
| LIST OF FIGURES       | ix  |
| LIST OF ABBREVIATIONS | xii |
| ACKNOWLEDGEMENTS      | xiv |
| ABSTRACT              | xvi |

#### 1.0 INTRODUCTION

| 1.1   | Diabetes Mellitus and blood glucose homeostasis | 1  |
|-------|-------------------------------------------------|----|
| 1.1.1 | Diabetes Mellitus                               | 1  |
| 1.1.2 | The Classification of Diabetes Mellitus         | 2  |
| 1.2   | Prevalence of Diabetes Mellitus in Sri Lanka    | 3  |
| 1.3   | Animal models in anti-diabetic evaluation       | 4  |
| 1.4   | Oral hypoglycemic agents                        | 8  |
| 1.5   | Phytomedicines in Diabetes Mellitus             | 16 |

#### 2.0 LITERATURE REVIEWS

| 2.1 | Anti-diabetic ethno-medicine in Sri Lanka | 19 |
|-----|-------------------------------------------|----|
| 2.2 | Costus speciosus Linn                     | 20 |
| 2.3 | Passiflora foeitida Linn                  | 24 |
| 2.4 | Ficus racemosa Linn                       | 27 |
| 2.5 | Osbeckia octandra Linn                    | 31 |

| 2.6 | Averrhoa carambola Linn           | 33 |
|-----|-----------------------------------|----|
| 2.7 | Aims and objectives of the thesis | 35 |

#### 3.0 MATERIALS AND METHODS

| 3.1 |       |     | Materials                                                  |    |
|-----|-------|-----|------------------------------------------------------------|----|
|     | 3.1.  | 1   | Chemicals and reagents                                     | 36 |
|     | 3.1.2 | 2   | Kits                                                       | 37 |
|     | 3.1.  | 3   | Facilities                                                 | 37 |
|     | 3.1.4 | 4   | Animals                                                    | 37 |
| 3.2 |       |     | Methods                                                    |    |
|     | 3.2.  | 1   | Survey on anti-diabetic medicinal plants used in Sri Lanka | 38 |
|     | 3.2.2 | 2   | Plant material                                             | 39 |
|     | 3.2.  | 3   | Extraction of plant material                               | 39 |
|     | 3.2.4 | 4   | Bioactivity guided solvent partitioning of 80% methanol    |    |
|     |       |     | extracts                                                   | 40 |
|     | 3.2.: | 5   | Preliminary phytochemical screening of 80% methanol        |    |
|     |       |     | extracts                                                   | 43 |
|     | 3     | i   | . Test for alkaloids                                       | 43 |
|     |       | ii  | . Test for steroidal compounds                             | 44 |
|     |       | iii | . Test for phenolic compounds                              | 45 |
|     |       | iv  | Test for flavonoids                                        | 45 |
|     |       | v   | Test for saponins                                          | 46 |

| vi      | . Test for tannins                                                                                                                       | 47       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------|----------|
| vii     | . Test for anthraquinones                                                                                                                | 48       |
| 3.2.6   | Quantitative determination of total phenols                                                                                              | 49       |
| 3.2.7   | Spectrophotometric determination of total alkaloids                                                                                      | 49       |
| 3.2.8   | Spectrophotometric Determination of saponins                                                                                             | 50       |
| 3.2.9   | Preliminary hypoglycemic activity of aqueous extracts                                                                                    | 52       |
| 3.2.10  | Evaluation of anti-hyperglycemic activity in glucose loaded                                                                              |          |
|         | Normal Wistar rats                                                                                                                       | 53       |
| 3.2.11  | In-vivo detail activity profile of the partitioned fractions                                                                             |          |
|         | in rats                                                                                                                                  | 54       |
| i       | . Anti-hyperglycemic activity in normal Wistar rats                                                                                      | 54       |
| ii      | . The effect of pretreatment fractions on biochemical                                                                                    |          |
|         | parameters in normal and alloxan induced NIDDM                                                                                           |          |
|         | Wistar rats for 42 days                                                                                                                  | 55       |
| iii     | . Collection of blood and determination of blood glucose levels                                                                          | 56       |
| iv      | . Induction of non-insulin-dependent Diabetes                                                                                            |          |
|         | -                                                                                                                                        |          |
|         | Mellitus (NIDDM)                                                                                                                         | 56       |
| v       |                                                                                                                                          | 56<br>57 |
| v<br>vi | . Determination of total cholesterol (TC)                                                                                                |          |
|         | <ul> <li>Determination of total cholesterol (TC)</li> <li>Determination of serum high density lipoprotein</li> </ul>                     |          |
|         | <ul> <li>Determination of total cholesterol (TC)</li> <li>Determination of serum high density lipoprotein cholesterol (HDL-C)</li> </ul> | 57       |

| ix     | . Determination of Anti-Atherogenic index (AAI)                 | 59 |
|--------|-----------------------------------------------------------------|----|
| x      | . Determination of serum insulin                                | 60 |
| xi     | . Determination of glycosylated hemoglobin (HbA <sub>1c</sub> ) | 61 |
| xii    | . Evaluation of serum creatinine and determination of renal     |    |
|        | function of the pretreatment active fractions on rat model      | 63 |
| 3.2.12 | Evaluation of <i>in-vitro</i> anti-oxidant activity             | 63 |
| 3.2.13 | Statistical analysis                                            | 65 |

#### 4.0 RESULTS AND DISCUSSION

| 4.1. | Ethno-medicinal survey                                           |
|------|------------------------------------------------------------------|
| 4.2. | Extraction of plant material 71                                  |
| 4.3. | Dose response studies                                            |
|      | 4.3.1 Aqueous extracts                                           |
|      | 4.3.2 Standard anti-hyperglycemic agents                         |
| 4.4. | The effect of hypoglycemic activities of aqueous, methanol       |
|      | and <i>n</i> -hexane extracts in normoglycemic rats              |
| 4.5. | Bio-activity guided solvent partitioning                         |
| 4.6. | Phytochemical screening                                          |
| 4.7. | Total saponins, total alkaloids and total phenol contents        |
| 4.8. | Evaluation of anti-diabetic activity of pretreatment partitioned |
|      | fractions in rats for 42 days                                    |

| 4.9.  | The evaluation of Oral Glucose Tolerance activity                                                   | 92                                                                                               |
|-------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 4.10. | The effect of biochemical parameters in correction                                                  |                                                                                                  |
|       | of hyperglycemia                                                                                    | 95                                                                                               |
| 4.11. | Determination of Anti-Atherogenic index (AAI)                                                       | 100                                                                                              |
| 4.12. | Evaluation of serum creatinine and assessment of                                                    |                                                                                                  |
|       | dose dependent renal function                                                                       | 101                                                                                              |
| 4.13. | Evaluation of <i>in-vitro</i> DPPH anti-oxidant activity                                            | 104                                                                                              |
| 4.14. | Effect of food and water intake in rats for 42 days                                                 | 106                                                                                              |
|       |                                                                                                     |                                                                                                  |
| CONC  | CLUSIONS                                                                                            | 108                                                                                              |
|       |                                                                                                     |                                                                                                  |
| REFE  | RENCES                                                                                              | 112                                                                                              |
|       | ž.                                                                                                  |                                                                                                  |
|       | <ul> <li>4.10.</li> <li>4.11.</li> <li>4.12.</li> <li>4.13.</li> <li>4.14.</li> <li>CONC</li> </ul> | <ul> <li>4.10. The effect of biochemical parameters in correction<br/>of hyperglycemia</li></ul> |

7.0

#### Page

#### LIST OF TABLES

| Table      |                                                                   | Page |
|------------|-------------------------------------------------------------------|------|
| Table 4.1: | Results of ethno pharmacological survey of medicinal plants       |      |
|            | used in the treatment of Diabetes Mellitus in Sri Lanka           | 68   |
| Table 4.2: | Percentage yield of water, ether and methanol                     |      |
|            | soluble plant extracts                                            | 72   |
| Table 4.3: | The dose response study of aqueous extracts                       |      |
|            | of selected medicinal plants                                      | 75   |
| Table 4.4: | Comparative hypoglycemic activities of aqueous, methanol and      |      |
|            | n-hexane extracts of Costus speciosus, Passiflora foetida and     |      |
|            | Osbeckia octandra in rats                                         | 79   |
| Table 4.5: | Hypoglycemic activity of solvent partitioning fractions of Costus |      |
|            | speciosus, Passiflora foetida and Osbeckia octandra in normal     |      |
|            | and alloxan induced NIDDM rats                                    | 81   |
| Table 4.6: | Types of phytochemicals extracted by different solvents           |      |
|            | (Hughton and Raman 1998)                                          | 83   |
| Table 4.7: | Evaluation of the cumulative activity profile of the partitioned  |      |
|            | fractions of 80% methanol extracts                                | 84   |
| Table 4.8: | Preliminary screening of the fractions of 80% methanol            |      |
|            | extract of Costus speciosus, Passiflora foetida                   |      |
|            | and Osbeckia octandra leaves                                      | 86   |

| Table 4.9:  | Total phenol, total alkaloid and total saponin contents of              |    |
|-------------|-------------------------------------------------------------------------|----|
|             | Costus speciosus, Passiflora foetida and Osbeckia octandra              | 87 |
| Table 4.10: | The effect of pretreatment fractions of <i>n</i> -hexane, ethyl acetate |    |
|             | and n-butanol fractions of Costus speciosus, Passiflora foetida         |    |
|             | and Osbeckia octandra on normal and alloxan-induced                     |    |
|             | NIDDM rats                                                              | 91 |
| Table 4.11: | Effect of anti-hyperglycemic activity by OGTT of the fractions          |    |
|             | of Costus speciosus, Passiflora foetida and Osbeckia octandra           |    |
|             | on normal and alloxan-induced NIDDM rats                                | 94 |
| Table 4.12: | Effect of pretreatment active fractions on lipid profile in             |    |
|             | alloxan induced NIDDM rats rats                                         | 96 |
| Table 4.13: | The effect of pretreatment of fractions of Costus speciosus,            |    |
|             | Passiflora foetida and Osbeckia octandra on                             |    |
|             | biochemical parameters in alloxan-induced NIDDM                         |    |
|             | Wistar rats for 42 days                                                 | 97 |
| Table 4.14: | Effect of pretreatment fractions of Costus speciosus,                   |    |
|             | Passiflora foetida and Osbeckia octandra on body weight and             |    |
|             | glycosylated hemoglobin in normal and alloxan-induced                   |    |
|             | NIDDM rats for 42 days                                                  | 98 |

| Table 4.15: | Effect of serum creatinine and estimation of GFR on           |     |
|-------------|---------------------------------------------------------------|-----|
|             | pretreatment active fractions of Costus speciosus, Passiflora |     |
|             | foetida and Osbechea octandra in normal and alloxan induced   |     |
|             | NIDDM Wistar                                                  | 102 |
| Table 4.16: | The comparison of in-vitro DPPH Antioxidant activity of 80%   |     |
|             | methanol extract of plants with their active fractions when   |     |
|             | compared to ascorbic acid                                     | 104 |
| Table 4.17: | Effect of pretreatment fractions of Costus speciosus,         |     |
|             | Passiflora foetida and Osbeckia octandra and glipizide on     |     |
|             | water intake of alloxan-induced NIDDM Wistar rats             | 106 |
| Table 4.18: | Effect of pretreatment fractions of Costus speciosus,         |     |
|             | Passiflora foetida and Osbeckia octandra glipizide on food    |     |
|             | intake of alloxan-induced induced NIDDM Wistar rats           | 107 |

#### LIST OF FIGURES

| Figures     | Page                                                      |
|-------------|-----------------------------------------------------------|
| Figure 1.1: | Chemical structure of sulphonylurea hypoglycemic          |
|             | agents                                                    |
| Figure 1.2: | Chemical structures of biguanide hypoglycemic agents      |
|             | (a. Metformin and b. Phenformin) 10                       |
| Figure 1.3: | Chemical structures of alpha-glucosidase enzyme inhibitor |
|             | Acarbose                                                  |
| Figure 1.4: | Chemical structures of Miglitol 12                        |
| Figure 1.5: | Chemical structure of Thiazolidinediones                  |
|             | (a. pioglitazone and b. rosiglitazone)13                  |
| Figure 1.6: | Chemical structures of Di-Peptidyl Peptidase-IV (DDP-IV)  |
|             | inhibitors (gliptins: a. Vildagliptin, b. Saxagliptin     |
|             | c. Sitagliptin and d. Alogliptin) 15                      |
|             |                                                           |
| Figure 2.1  | Leaves of <i>Costus speciosus</i> Linn 20                 |
| Figure 2.2  | Leaves of Passiflora foetida Linn                         |
| Figure 2.3  | Leaves of <i>Ficus racemosa</i> Linn 27                   |
| Figure 2.4  | Leaves of Osbeckia octandra Linn                          |
| Figure 2.4  | Leaves of <i>Averrhoa carambola</i> Linn                  |
|             |                                                           |
|             |                                                           |

| Figure 3.2: | Scheme of representation of the solvent partitioning of       |
|-------------|---------------------------------------------------------------|
|             | 80% methanol extracts of Costus speciosus, Passiflora foetida |
|             | and Osbechea octandra42                                       |

| Figure 4.1: | Frequency (as percentage informants) of Medicinal                 |
|-------------|-------------------------------------------------------------------|
|             | Plants used in the treatment of Diabetes Mellitus in Sri Lanka 67 |
| Figure 4.2: | Frequency of plant families in the treatment of Diabetes          |
|             | Mellitus in Sri Lanka                                             |
| Figure 4.3: | Frequency of plant parts used in the treatment of Diabetes        |
|             | Mellitus in Sri Lanka                                             |
| Figure 4.4: | The dose response activity of the two standard drugs (glipizide   |
|             | and metformin) on Wistar rats                                     |
| Figure 4.5: | Comparison of percentage reduction in BGL vs log dose for         |
|             | methanol extracts of plants and the two standard drugs            |
|             | glipizide and metformin on Wistar rats77                          |
| Figure 4.6: | Comparison of percentage reduction in BGL vs log dose of          |
|             | fractions of plants on Wistar rats 90                             |
| Figure 4.7: | Percentage change in the body weight of the pretreatment          |
|             | of active fractions after 42 days when compared to the            |
|             | control group                                                     |

| Figure 4.8:  | Effects of fraction treatment on Anti-Atherogenic index (AAI)     |     |
|--------------|-------------------------------------------------------------------|-----|
|              | in normal and alloxan-diabetic rats. AAI were plotted before      |     |
|              | (0 <sup>th</sup> day) and after daily oral treatment with vehicle |     |
|              | (distilled water) and fractions for 42 days                       | 100 |
| Figure 4.9:  | Relation of GFR with the weight (kg)/serum creatinine (mmol/L)    |     |
|              | in rats                                                           | 101 |
| Figure 4.10: | The effect of dose of active fractions vs GFR correlation of      |     |
|              | active fractions in normal and ARF induced rats                   | 103 |
| Figure 4.11: | Comparison of DPPH anti-oxidant effect of 80% Methanol            |     |
|              | extract of plants with their active fractions when compared to    |     |
|              | Ascorbic acid                                                     | 105 |

#### LIST OF ABBREVIATIONS

| 80%ME: | 80% methanol extract                              |
|--------|---------------------------------------------------|
| AAI:   | Anti-Atherogenic index                            |
| AE:    | Aqueous extract                                   |
| AF:    | Remaining aqueous fraction                        |
| ALX:   | Alloxan monohydrate                               |
| BCG:   | Bromo cresol green solution                       |
| BGL:   | Blood glucose level                               |
| BF:    | <i>n</i> -butanol fraction                        |
| CF:    | Chloroform fraction                               |
| CP:    | Corpulent rats                                    |
| DM:    | Diabetes mellitus                                 |
| DMSO:  | Dimethyl sulfoxide                                |
| DPPH:  | di (phenyl)-(2, 4, 6-trinitrophenyl) iminoazanium |
| EF:    | Ethyl acetate fraction                            |
| ELISA: | Enzyme-linked immunosorbent assay                 |
| FBG:   | Fasting blood glucose concentration               |
| GAE:   | Gallic acid equivalent                            |
| GK:    | Goto-Kakizaki rats                                |
| HbA1c: | Serum glycosylated hemoglobin                     |
| HDL-C: | Serum high density lipoprotein cholesterol        |
| HF:    | <i>n</i> -hexane fraction                         |
| IDDM:  | Insulin-dependent diabetes mellitus               |
| IDF:   | International Diabetes Federation                 |

| KK:     | Mice of the KK strain develop diabetes of polygenic origin |
|---------|------------------------------------------------------------|
| LDL-C:  | Serum low density lipoprotein cholesterol                  |
| ME:     | Methanol extract                                           |
| NIDDM:  | Non-insulin-dependent diabetes mellitus                    |
| OD500:  | Optical density at 500 nm                                  |
| PPAR:   | Peroxisome proliferator activated receptor                 |
| RC:     | Ratio of control                                           |
| RT:     | Ratio of test                                              |
| SEM:    | Standard error mean                                        |
| STZ:    | Streptozotocin                                             |
| TC:     | Serum total cholesterol                                    |
| ТНь:    | Serum total hemoglobin fraction                            |
| TZDs:   | Thiazolidinedione                                          |
| VLDL-C: | Serum very low density lipoprotein cholesterol             |
| WHO:    | World health organization                                  |
| ZFR:    | Zucker fatty rats                                          |

xiii

#### ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisors, Dr. A. K. E. Goonathilake, Department of Pharmacology, Faculty of Medical Sciences, University of Sri Jayewardenepura and Dr. G. A. Sirimal Premakumara (Doctorate Research Fellow), for his consistent supervision and dedication in guiding and following the work by devoting their golden time. And also Prof. A. M. Abeysekara, Department of Chemistry and Prof. U. G. Chandrika, Department of Biochemistry, for their constructive advice, encouragement, provision of chemicals, guidance and follow-up throughout this study. I would also like to acknowledge University of Sri Jayewardenepura and University Grant Commission for funding the project, Department of Chemistry and Department of Health Sciences for providing necessary chemicals and apparatus.

My gratitude also goes to Coordinator of the animal house for allowing me to use the animal house, and the staff of the animal house for their help in operating animal studies. I wish to thank all the staff members in Medical Research Institute, Ministry of Health, Sri Lanka, for providing me the necessary training program in animal handling.

I would also like to thank Prof. Ranil De Silva, Department of Anatomy and Prof. Kamani Samarasinghe, Dr. Inoka Uluwaduga and all the staff members of the Department of Health Sciences for their invaluable assistance during the study providing me advice. Finally yet importantly, I would like to express my deepest gratitude to my family, especially to my mother for her encouragement and support.

## ANTIDIABETIC COUMPOUNDS FROM MEDICINAL PLANTS USED IN THE INDIGENOUS SYSTEM OF MEDICINE (*'DESHIYA CHIKITSA'*) IN SRI LANKA Malitha Aravinda Siriwardhene

#### ABSTRACT

The present study investigated the anti-diabetic effects of *Costus speciosus*, *Passiflora foetida* and *Osbeckia octandra* used in the treatment of DM in Sri Lanka. Eighty percent methanol extract (80ME) of *C. speciosus*, *P. foetida* and *O. octandra* leaf were evaluated for their hypoglycemic activity. Thereafter, the 80% ME extracts of plants were partitioned with organic solvents *n*-hexane, chloroform, ethyl acetate and *n*-butanol to obtain *n*-hexane (HF), chloroform (CF), ethyl acetate (EF) and *n*-butanol (BF) soluble fractions. The dose response study of the plant extracts showed, at dose of 20 mg/kg was the most effective dose. Hence, the effects of partitioned fractions of 80ME on correction of hyperglycemia were tested at a dose of 20 mg/kg in three different rat models of diabetes viz., hypoglycemic, anti-hyperglycemic and ALX-diabetic (representing the type 2 diabetic model-NIDDM) using Swiss albino Wistar rats. The effects of extracts and fractions were compared with the effect of standard drugs metformin (100 mg/kg) and glipizide (10 mg/kg).

The fractions of EF and BF of *C. speciosus* and EF of both *P. foetida* and *O. octandra* produced significant (p<0.05) improvement in glucose tolerance activity compared to control rats. In the long-term study, once a day administration of EF and BF of both *P. foetida* and *O. octandra* (20 mg/kg) in both normal and ALX-diabetic rats produced significant (p<0.05) antidiabetic activity. However the effect produced by *P. foetida* and

O. octandra fractions were lower than that of BF of C. speciosus. The study of serum biochemical parameters at a dose of 20 mg/kg showed that the 80% ME fractions of P. foetida and O. octandra have potent hypolipidemic and anti-atherogenic activities. It also improved in liver enzyme activities on both normal and ALX diabetic rats. It was observed that both C. speciosus and O. octandra fractions increased serum insulin level and lowered lipid profile significantly (p<0.05) in both normal and ALX-diabetic rats. It finally concluded that the most active partitioned fractions of these plants are BF of C. speciosus, EFs of P. foetida and O. octandra. The DPPH scavenging in-vitro anti-oxidant activities of C. speciosus (BF), O.octandra (EF) and P. foetida (EF) fractions were compared against ascorbic acid showed similar anti-oxidant activities with that of ascorbic acid. The improved renal functions along with increased in Glomerular Filtration Rate (GFR), the effect of body weight and reduced serum creatinine indicates the renal safety in chronic use of these plant fractions in the treatment of DM. The phytochemical investigation revealed that the activity profile could be due to the synergistic interaction of small molecular weight compounds present in 80% methanol extracts which may be belongs to the plant secondary metabolites viz., phenolics, alkaloids or glycoside compounds. It also proven the ethno medicinal value of C. speciosus, O.octandra and P. foetida. Further detail characterization of chemical compounds which are responsible for hypoglycemic activity of these plants may provide a pathway to discover new chemical entities in the treatment of DM.

Key words: Costus speciosus, Passiflora foetida, Osbechea octandra, hypoglycemia and renal function