Application of Modern Technologies in the Manufacture of Ayurvedic Drugs - Spray Drying & Ethanol Extraction of Two Selected Decoctions

by

Tissa Hewavithana

Thesis Submitted to the University of Sri Jayawardenapura for the award of the Degree of Master of Science in Food Science and Technology on 2006
Declaration

"The worked described in this thesis was carried out by me under the supervision of Prof. A. Bamunu Arachchi, Prof. M.H.A. Tissera, and Dr. K.K.D.S. Ranaweera and a report and this has not been submitted in whole or in part of any university or any other institution for another Degree/Diploma."

Date: 23/8/2006

Tissa Hewavithana
We certify that the above statement made by candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Prof. A. Bamunuarachchi

Course coordinator

Former Head of the Department of Food science & Technology

Faculty of Applied Science- University of Sri Jayawardenapura

Sri Lanka

23/8-2006

Dr. K.K.D.S. Ranaweera

Head,

Department of Food science & Technology

Faculty of Applied Science- University of Sri Jayawardenapura

Sri Lanka

Prof. M.H.A. Thissera

Head,

Department of Mooladharma

Gampaha Wickramarachchi Ayurveda Institute

University of Kelaniya

Sri Lanka
AFFECTIONATELY DEDICATED

TO

My Late Father
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of contents</td>
<td>i</td>
</tr>
<tr>
<td>List of tables</td>
<td>v</td>
</tr>
<tr>
<td>List of figures & plates</td>
<td>viii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>ix</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>x</td>
</tr>
<tr>
<td>Abstract</td>
<td>xi</td>
</tr>
<tr>
<td>List of contents</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 1- INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Goal of research-</td>
<td>3</td>
</tr>
<tr>
<td>1.2. Objectives of research-</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 2- LITERATURE REVIEW</td>
<td>4</td>
</tr>
<tr>
<td>2.1. Traditional decoctions</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1. Five types of decoction</td>
<td>5</td>
</tr>
<tr>
<td>2.1.1.1. Swarasa</td>
<td>6</td>
</tr>
<tr>
<td>2.1.2.1. Kalka</td>
<td>7</td>
</tr>
<tr>
<td>2.1.3.1. Sritha/Kwātha</td>
<td>7</td>
</tr>
<tr>
<td>2.1.4.1. Hima</td>
<td>7</td>
</tr>
<tr>
<td>2.1.5.1. Phānta</td>
<td>8</td>
</tr>
<tr>
<td>2.1.2. Triphala Kwātha</td>
<td>9</td>
</tr>
<tr>
<td>2.1.3. Dhanaya Panchaka Kwātha</td>
<td>12</td>
</tr>
<tr>
<td>2.2. Spray Drying - Method</td>
<td>15</td>
</tr>
<tr>
<td>2.2.1. Advantages of Spray Drying</td>
<td>16</td>
</tr>
</tbody>
</table>
2.2.2. Disadvantages of Spray Drying 17

2.3. Ethanol extraction 17

2.3.1. Maseration 17

2.3.2. Percolation 17

2.3.3. Extracts 18

2.4. Methods of Analysis 19

2.4.1. Sensory evaluation (Organoleptic properties) 19

2.4.2. Specific gravity 19

2.4.3. pH 19

2.4.4. Viscosity 20

2.4.5. Total fat 20

2.4.6. Ash 21

2.4.6.1. Acid insoluble ash 21

2.4.7. Alcohol content 21

2.4.8. Refractive index 21

2.4.9. Brix value (Total soluble solids) 21

2.4.10. Thin Layer Chromatography 22

2.4.11. Absorbance 22

2.4.12. Tannin content 22

2.4.12.1. Loewenthal titration 23

CHAPTER 3- MATERIALS AND METHODS 24

3.1. Choosing Method of Recipes of Decoctions 25

3.1.1. Triphala Kwātha 25

3.1.2. Dhanya Panchaka Kwātha 25
3.2 Method of preparation of Traditional Decoction

3.2.1 Traditional Triphala Kwātha

3.2.2 Traditional Dhanya Panchaka Kwātha

3.3 Method of Spray drying of Kwātha

3.3.1 Spray drying of Triphala Kwātha

3.3.2 Spray drying of Dhanya Panchaka Kwātha

3.4 Method of Preparation of ethanol extraction

3.4.1 Triphala ethanol extraction

3.4.2 Dhanya Panchaka ethanol extraction

3.5 Analysing Methods

3.5.1 Determination of Sensory (Organo leptic) Properties

3.5.2 Determination of Specific gravity

3.5.3 Determination of pH

3.5.4 Determination of Viscosity

3.5.5 Determination of total fat

3.5.6 Determination of Ash (Wet basis)

3.5.6.1 Determination of Acid insoluble ash

3.5.7 Determination of Alcohol content

3.5.8 Determination of Refractive index

3.5.9 Determination of Brix value (Total soluble solids)

3.5.10 Determination of Thin layer chromatography

3.5.11 Determination of Absorbency

3.5.12 Determination of Tannin content

3.5.13 Analysis of Results
CHAPTER 4-RESULTS

4.1. Selection of Preparations ranked by the practitioners (Users) 45
4.2. Water extracted preparations (Decoctions) of Triphala and Dhanya Panchaka 46
4.3. Spray dried Preparations of Triphala and Dhanya Panchaka 46
4.4. Ethanol extracted preparations of Triphala and Dhanya Panchaka 47
4.5. TRI Decoction one way ANOVA 48
4.6. DPK Decoction one way ANOVA 51

CHAPTER 5-DISCUSSION

5.1. Homogeneous Subsets for TRI 56
5.2. Homogeneous Subsets for DPK 70

CHAPTER 6-CONCLUSION 83

CHAPTER 7-REFERENCES 85

CHAPTER 8-APPENDICES 90

I Conversion tables 91
II Questionnaire for Ayurveda physicians (Survey) 92
III Main decoctions used in Sri Lanka 95
IV Reagents for Lowenthal’s Permanganate Oxidation 101
V Composite scoring test questionnaire 102
VI Post HOC test for TRI and DPK 103
VII Pie charts for various wave lengths for TRI and DPK 109
VIII TLC reports for TRI and DPK 119
List of Tables

<table>
<thead>
<tr>
<th>Table no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Five categories of decoction</td>
<td>6</td>
</tr>
<tr>
<td>3.1 Quantity of TRI decoction</td>
<td>27</td>
</tr>
<tr>
<td>3.2 Quantity of DPK decoction</td>
<td>28</td>
</tr>
<tr>
<td>3.3 Quantity of concentrated TRI decoction</td>
<td>30</td>
</tr>
<tr>
<td>3.4 Quantity of reconstituted Spray dried decoction TRI</td>
<td>31</td>
</tr>
<tr>
<td>3.5 Quantity of concentrated DPK decoction</td>
<td>32</td>
</tr>
<tr>
<td>3.6 Quantity of reconstituted spray dried decoction DPK</td>
<td>32</td>
</tr>
<tr>
<td>3.7 Quantity of TRI ethanol extraction</td>
<td>34</td>
</tr>
<tr>
<td>3.8 Quantity of DPK ethanol extraction</td>
<td>35</td>
</tr>
<tr>
<td>4.1 Mostly using decoctions according to survey</td>
<td>45</td>
</tr>
<tr>
<td>4.2 Volume of traditional decoctions</td>
<td>46</td>
</tr>
<tr>
<td>4.3 Volume of spray dried decoctions</td>
<td>47</td>
</tr>
<tr>
<td>4.4 Volume of ethanol extracted preparations</td>
<td>48</td>
</tr>
<tr>
<td>4.5 One way ANOVA TRI 4 variables</td>
<td>48</td>
</tr>
<tr>
<td>4.6 One way ANOVA TRI 11 variables</td>
<td>49</td>
</tr>
<tr>
<td>4.7 One way ANOVA TRI wave length variables</td>
<td>50</td>
</tr>
<tr>
<td>4.8 One way ANOVA DPK 4 variables</td>
<td>51</td>
</tr>
<tr>
<td>4.9 One way ANOVA DPK 11 variables</td>
<td>52</td>
</tr>
<tr>
<td>4.10 One way ANOVA DPK wave length variables</td>
<td>53</td>
</tr>
<tr>
<td>5.1 Colour variable (TRI)</td>
<td>56</td>
</tr>
<tr>
<td>5.2 Consistency variable (TRI)</td>
<td>57</td>
</tr>
<tr>
<td>5.3 Odour variable (TRI)</td>
<td>57</td>
</tr>
</tbody>
</table>
5.4. Taste variable (TRI) 58
5.5. pH variable (TRI) 58
5.6. Ash content % (TRI) 59
5.7. Acid insoluble ash (TRI) 60
5.8. Total fat content % (TRI) 60
5.9. TLC RF value (TRI) 61
5.10. Viscosity variable (TRI) 62
5.11. Specific gravity variable (TRI) 62
5.12. RF Index variable (TRI) 63
5.13. Alcohol content % variable (TRI) 63
5.14. Tannine % variable (TRI) 64
5.15. Total soluble solid variable (TRI) 64
5.16. 410 nm. Wave length variable (TRI) 65
5.17. 420 nm. Wave length variable (TRI) 65
5.18. 430 nm. Wave length variable (TRI) 66
5.19. 440 nm. Wave length variable (TRI) 67
5.20. 450 nm. Wave length variable (TRI) 66
5.21. 460 nm. Wave length variable (TRI) 67
5.22. 470 nm. Wave length variable (TRI) 67
5.23. 480 nm. Wave length variable (TRI) 67
5.24. 490 nm. Wave length variable (TRI) 68
5.25. 500 nm. Wave length variable (TRI) 68
5.26. Colour variable (DPK) 70
5.27. Consistency variable (DPK) 70
5.28. Odour variable (DPK)
5.29. Taste variable (DPK)
5.30. pH variable (DPK)
5.31. RF Index variable (DPK)
5.32. Acid insoluble ash (DPK)
5.33. Total fat content % (DPK)
5.34. Tannin % variable (DPK)
5.35. TLC RF value (DPK)
5.36. Viscosity variable (DPK)
5.37. Specific gravity variable (DPK)
5.38. Ash content % variable (DPK)
5.39. Alcohol content % variable (DPK)
5.40. Total soluble solid variable (DPK)
5.41. 410 nm. Wave length variable (DPK)
5.42. 420 nm. Wave length variable (DPK)
5.43. 430 nm. Wave length variable (DPK)
5.44. 440 nm. Wave length variable (DPK)
5.45. 450 nm. Wave length variable (DPK)
5.46. 460 nm. Wave length variable (DPK)
5.47. 470 nm. Wave length variable (DPK)
5.48. 480 nm. Wave length variable (DPK)
5.49. 490 nm. Wave length variable (DPK)
5.50. 500 nm. Wave length variable (DPK)
List of Figures

<table>
<thead>
<tr>
<th>Figure no.</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig.2.1. Chebulic myrobalan nuts</td>
<td>10</td>
</tr>
<tr>
<td>Fig.2.2. Belliric myrobalan nuts</td>
<td>11</td>
</tr>
<tr>
<td>Fig.2.3. Embalic myrobalan</td>
<td>11</td>
</tr>
<tr>
<td>Fig.2.4. Coriandrum sativum seeds</td>
<td>12</td>
</tr>
<tr>
<td>Fig.2.5. Cyperus rotundus tubers</td>
<td>13</td>
</tr>
<tr>
<td>Fig.2.6. Zingiber officinalis tubers</td>
<td>14</td>
</tr>
<tr>
<td>Fig.2.7. Aegle marmelos fruits</td>
<td>14</td>
</tr>
<tr>
<td>Fig.2.8. Plectranthus zylanicus leaves</td>
<td>15</td>
</tr>
<tr>
<td>Fig.2.9. Sketch of Spray dryer</td>
<td>16</td>
</tr>
<tr>
<td>Fig.3.1. Preparation of quathas</td>
<td>28</td>
</tr>
<tr>
<td>Fig.3.2. Take the measurement of prepared quatha</td>
<td>28</td>
</tr>
<tr>
<td>Fig.3.3. Spray dryer laboratory scale</td>
<td>29</td>
</tr>
<tr>
<td>Fig.5.1. TLC plate for TRI decoction</td>
<td>69</td>
</tr>
<tr>
<td>Fig.5.2. TLC plate for DPK decoction</td>
<td>82</td>
</tr>
</tbody>
</table>
I wish to express my deepest gratitude to my supervisors Prof. A. Bamunuarachchi Course coordinator and former head of the Department of Food Science of University of Sri Jayawardenapura, Dr. K.K.D.S. Ranaweera Head of the Department of Food Science and Prof. M.H.A. Thissera Head of the Department of Basic Principals Gampaha Wickramarachchi Ayurveda Institute (G.W.A.I) University of Kelaniya for their successful guidance, encouragement, ideas and suggestions provide throughout the research project.

I like to thank Mr. J. Wansapala and Mrs Indira lecturers of Department of Food Science for their assistance and help in my project work.

My thanks also go to Mrs. Rupika Perera and Mr. Sisira Weerasinghe for affectionate helping throughout the laboratory work and the analytical part.

My thanks go to Mr. Rupasingha for his realistic cooperation.

Thanks are also expressed to Mr. T.D.W. Sriwardena Director, Food Technology Research Institute Gannoruwa by helping for the spray drying process, Mr. P. Dias senior lecturer Department of Mathematics University of Sri Jayawardenapura for helping for statistical analysis part, Staff of Pharmacy of G.W.A.I. and the 3rd year and 2nd year students of the Institute by helping the sensory analysis of the product.

Finally, I thank my mother, wife, son and daughter for their encouragement and support to make the thesis success.

I hope this thesis will help to open a door, to bridge the existing gap between modern technology and Ayurveda drug manufacturing process.
Abbreviations

DPl – Dhānya Panchaka

TRI – Triphalā

1AL1 - Traditional Triphalā decoction sample 1
1AL2 - Traditional Triphalā decoction sample 2
1AL3 - Traditional Triphalā decoction sample 3
1BP1 - Spray dried Triphalā decoction sample 1
1BP2 - Spray dried Triphalā decoction sample 2
1BP3 - Spray dried Triphalā decoction sample 3
1CE1 - Ethanol extraction of Triphalā sample 1
1CE2 - Ethanol extraction Triphalā sample 2
1CE3 - Ethanol extraction Triphalā sample 3

2AL1 - Traditional Dhānya Panchaka decoction sample 1
2AL2 - Traditional Dhānya Panchaka decoction sample 2
2AL3 - Traditional Dhānya Panchaka decoction sample 3
2BP1 - Spray dried Dhānya Panchaka decoction sample 1
2BP2 - Spray dried Dhānya Panchaka decoction sample 2
2BP3 - Spray dried Dhānya Panchaka decoction sample 3
2CE1 - Ethanol extraction of Dhānya Panchaka sample 1
2CE2 - Ethanol extraction of Dhānya Panchaka sample 2
2CE3 - Ethanol extraction of Dhānya Panchaka sample 3
“Application of Modern Technologies in the Manufacture of the Ayurvedic Drugs – Spray Drying & Ethanol Extraction of two Selected Decoctions”

by Tissa Hewavithana

ABSTRACT

Ayurveda medicine has been in practice for many years in Sri Lanka. Despite many forms of drug preparations, decoctions (Kashāyas) have proved far better results in Ayurveda sector. In fact, the kashāya contains five types, namely Swarasa, Kalka, Kātha/Srita, Hima and Phānta. Among these five, Kātha or Srita is the most widely used preparation. It is useful to investigate innovative sophisticated strategies to improve the quality of Ayurveda preparations. For instance, Spray drying method and Ethanol extraction method can be used as alternative methods to traditional approach of drug preparation. In order to investigate the effectiveness of the alternative methods, it was necessary to select two widely used drugs. For this purpose, two decoctions were selected by using a questionnaire, distributed among selected physicians in different parts of the country; the Triphala which contains three drugs (Aralu, Bulu, Nelli), and other one was Dhanaya Panchaka which contains five drugs (Coriander, Dry ginger, Grass root, Immature bale fruit and Iriveriya).

Initially the two recipes were prepared as traditional decoction. In this case 50g of each drug was weighted for Triphala and 30g of each drug was weighed for Dhanaya Panchaka which were put in to two clay pots separately containing 4800 ml water each and boiled, reducing it up to 600 ml. Similarly another two sets of decoctions were prepared reducing them from 600 ml to
450 ml using a water bath. These samples were spray dried. For ethanol extraction another 2 sets of (150 g) raw materials were weighed and put into 70% alcohol and strained after a week which was then rotavaporized for the removal of the alcohol.

Then all the samples prepared according to spray dried method and ethanol extracted method were diluted up to 600 ml which were compared chemically by using sensory analysis, pH, specific gravity, refractive index, viscosity, total soluble solids, ash content, acid insoluble ash, total fat content, TLC Rf value, Absorbance and Tannin content.

The results were analyzed statistically by using one way ANOVA followed by the Tukey's test. While the corresponding p values are significantly different at the level of 0.05 in colour, consistency, specific gravity, Rf index, alcohol content, tannin content, ash content, viscosity and total soluble solids, but significantly same in odour, taste, pH value, acid insoluble ash, fat content and TLC Rf values at the same level. When using the Tukey’s test for the significantly different variables, refractive index, total soluble solids, viscosity, alcohol content, colour and consistency were significantly same. The results of the Spray dried samples showed similar composites to the traditional preparations than that of the Ethanol extracted preparations.

Thus it is possible to conclude that Spray drying method can be used as an alternative method to the traditional decoction preparing method and it is more suitable for decoctions containing raw materials with less volatiles. Further clinical research has to be designed in the future to investigating the effect of the drug.