Assessment of impact of pesticides on water catchments and

groundwater in some selected areas of Sri Lanka

by

Ambalanyaya Gamaethige Piyal Aravinna

Thesis submitted to the University of Sri Jayewardenepura for

the award of the

Degree of Master of Philosophy in Chemistry on

29th September 2006

Declaration

The work described in this thesis was carried out by me under the supervision of Dr. Sudantha Liyanage, Dr. (Mrs.) Janitha A. Liyanage and Dr. A. M. Mubarak and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

Rydam

Signature of the candidate

1.	INTRODUCTION
	minopolition

2.

LITE	LITERATURE REVIEW		
2.1	Background of selected areas for pesticide impact assessment		
	2.1.1 Kalpitiya peninsula	5	
	2.1.1.1 Climate and geology	5	
	2.1.1.2 Land use and agriculture		
	2.1.1.3 Water usage of the area		
	2.1.1.4 Usage of pesticide	9	
	2.1.2 Walawe area	11	
	2.1.2.1 Climatic condition	11	
	2.1.2.2 Physical and chemical properties of soil	12	
	2.1.2.3 Main Irrigation system	15	
	2.1.2.4 Drinking water sources of the Walawe area	15	
	2.1.2.5 Usage of agricultural drainage water in Walawe area	16	
	2.1.2.6 Land use of Walawe area	16	
	2.1.2.7 Pesticide use	17	
2.2	Pesticide fate in the environment	21	
	2.2.1 Movement of pesticide in the environment	21	
	2.2.1.1 Movement of pesticide by air	21	
	2.2.1.2 Movement of pesticide by water	22	
	2.2.1.3 Movement of pesticide by crop removal	23	

1

	2.2.2 Degradation of pesticides	23
	2.2.2.1 Microbial degradation	24
	2.2.2.2 Photo degradation	24
2.3	Tools for Pesticide impact assessment on	
	environmental component	34
	2.3.1 Approach to risk assessment tools	34
	2.3.2 Importance of PIRI as a simple risk indicator	35
	2.3.3 Input parameters of PIRI	36
	2.3.4 Theoretical background of PIRI	36
	2.3.4.1 Pesticide load	36
	2.3.4.2 Pesticide transport to groundwater	37
	2.3.4.3 Pesticide transport to surface water	38
	2.3.4.4 Estimated concentration of pesticide	41
	2.3.4.5 Toxicity indexes	42
	2.3.4.6 Total pesticide load	43
2.4	Applicable analytical methods for pesticide residual analysis	43
	2.4.1 Extraction methods	43
	2.4.2 Instrumentation	43
	2.4.2.1 GC application for pesticide residue analysis	44
	2.4.2.2 HPLC application for analysis of pesticide residues	46
	2.4.2.3 Application of MSD	48
	2.4.3. Confirmation test for detected results	48
2.5	Toxicity measurement of pesticides	48

	2.5.1	Pesticides and human health	48
	2.5.1.1	Acute (immediate) health effects	49
	2.5.1.2	Chronic (Long-term) health effects	50
	2.5.1.3	Health and environmental effects of certain classes	
		of pesticides	50
	2.5.2	Toxicity endpoints	51
	2.5.2.1	Lethal Dose (LD ₅₀)	52
	2.5.2.2	Lethal Concentration (LC ₅₀)	52
	2.5.2.3	Effective Concentration (EC ₅₀)	52
	2.5.2.4	No Observed Adverse Effect Level (NOAEL)	53
	2.5.2.5	Lowest Observed Adverse Effect Level (LOAEL)	53
	2.5.3	Toxicological reference points for drinking water	
		assessments	53
	2.5.3.1	Reference dose (RfD)	54
	2.5.3.2	Drinking-water equivalent level (DWEL)	55
	2.5.3.3	Health advisories (HALs)	55
	2.5.3.4	Risk specific dose (RSD)	57
	2.5.4	Classifications and ranking chemicals	
		on their acute toxicity	58
MET	HODOI	LOGY	63

3 1

iii

3.1	Evalua	ation of sensitivity of PIRI as a pollution potential index	63
	3.1.1	Effect of input parameter on groundwater	
		pollution potential	63
	3.1.1.1	Percentage of organic matter	63
	3.1.1.2	Organic carbon partition coefficient and half life	64
	3.1.1.3	Soil type	65
	3.1.1.4	Recharge rate	66
	3.1.2	Effect of input parameter on surface water	
		pollution potential	67
	3.1.2.1	Contribution of runoff and erosion on pollution potential	67
	3.1.2.2	2 Buffer zone effect on pollution potential	68
	3.1.2.3	B Effect of land slope on pollution potential	69
	3.1.2.4	Effect of pesticide load on pollution potential	70
	3.1.3	Data handling of PIRI	71
	3.1.3.	1 Difficulties of data handling for mosaic of land uses	71
	3.1.3.2	2 Estimation of pesticide load on mosaic of land uses	71
	3.1.3.	3 Estimation for seasonal soil loss	72
	3.1.3.4	4 Estimation of toxicity parameter for PIRI	72

3.2 Estimation of mobility risk and toxicity risk for commonly used pesticides on groundwater and surface water using PIRI 74

	3.2.1 Site selection	74	
	3.2.2 PIRI input data	75	
	3.2.2.1 Soil parameters of the selected area	75	
	3.2.2.2 Field data	75	
	3.2.2.3 Climatic parameters for the selected period	76	
	3.2.2.4 Input parameters of catchments in Walawe area		
	3.2.2.5 Pesticide input parameters	77	
	3.2.2.6 Time period	78	
3.3	Water quality monitoring	79	
	3.3.1 Walawe area	79	
	3.3.1.1 Monitoring of surface water reservoirs	79	
	3.3.1.2 Field trial 1	79	
	3.3.1.3 Field trial 2	80	
	3.3.2 Kalpitiya area	82	
	3.3.2.1 Initial monitoring program	82	
	3.3.2.2 Field trial 3	83	
	3.3.3 Handling of samples	88	
3.4	Analytical methods used for pesticide residual analysis	88	
	3.4.1 Apparatus and materials	88	
	3.4.1.1 Equipment	88	
	3.4.1.2 Glassware	89	
	3.4.1.3 Reagents	90	

3.4.2. Standard solutions	91
3.4.2.1 Stock standard solutions	91
3.4.2.2 Intermediate standard solution	92
3.4.2.3 Working solution	92
3.4.2.4 Calibration standard	92
3.4.2.5 Solvent for standard solution	92
3.4.3 Sample preparation	92
3.4.3.1 Sample extraction	92
3.4.3.2 Florisil column cleanup procedure	94
3.4.4 Instrumentation	95
3.4.4.1 HPLC operating conditions	95
3.4.4.2 GC operating conditions	95
3.4.4.3 GC/ MS operating conditions	97
3.4.5 Compound identification and quantification	97
3.4.5.1 Identification of analytes	97
3.4.5.2 Quantification of analytes	98
3.4.6 Method detection limits	100
3.4.6.1 Definition	100
3.4.6.2 Determination procedure for MDL	100
3.4.7 Recovery studies	101
3.4.8 Confirmation of detected compounds	102
3.4.8.1 Confirmation of detected pesticide by HPLC	102

		3.4.8.2	2 Confirmation of detected pesticide by GC/µECD	102
		3.4.8.3	Confirmation of detected pesticide by GC/NPD	102
4.	RES	ULTS		103
	4.1	PIRI	Predictions	103
		4.1.1	Groundwater risk	103
		4.1.2	Surface Water risk	103
	4.2	Result	ts of water quality monitoring	113
		4.2.1	Walawe area	113
		4.2.1.1	Surface water reservoirs	113
		4.2.1.2	2 Monitoring results of field trial 1	113
		4.2.1.3	3 Monitoring results of field trial 2	113
		4.2.2	Kalpitiya area	116
		4.2.2.1	Results of initial monitoring program	116
		4.2.2.2	2 Results of field trial 3	117
	4.3	Analy	tical parameters of selected pesticides	119
		4.3.1	Method detection limits	119
		4.3.1.1	Method detection limits of analysed pesticides by HPLC	119
		4.3.1.2	2 Method detection limits of analysed pesticides by GC	119
		4.3.2	Recoveries of analysed pesticides	120
		4.3.3	Confirmation result	120
5	DISC	CUSSIO	N	139

5.1	Comparison of actual risk with PIRI Prediction	139
	5.1.1 Ground water	139
	5.1.2 Surface water	140
5.2	Dissipation of pesticides on field	141
	5.2.1 Carbamate pesticides	141
	5.2.1.1 Carbofuran	141
	5.2.1.2 Carbaryl	142
	5.2.2 Organophosparous pesticides	143
	5.2.2.1 Chlorpyrifos	143
	5.2.2.2 Dimethoate	144
	5.2.2.3 Diazinon	145
	5.2.3 Other pesticide groups	146
	5.2.3.1 Imidacloprid	146
	5.2.3.2 Oxyfluorfen	148
5.3	Effect of indiscriminate pesticide application on	
	water pollution	149
5.4	Effect of agricultural practices on pesticide leaching	150
	5.4.1 Irrigation	150
	5.4.2 Organic carbon content of soil	151
5.5	Lateral movement of pesticides	152
56	Movement of pesticides to surface water body	152

	5.7 Comparison of detected	ed residue levels with drinking
	water guide lines	153
6	CONCLUTION	155
7	REFERENCES	157
8	APPENDICES	165
	Appendix 1	165
	Appendix 2	175
	Appendix 3	176
	Appendix 4	177
	Appendix 5	180

LIST OF TABLES

1	Physical and chemical properties of surface soil of Kalpitiya	6
2	Physical and chemical properties of major soil types of Walawe area	12-13
3	Summery of pesticide usage by farmers in the Kalpitiya peninsula	
	and Walawe area	19-20
4	Half life of selected pesticides under various degradation pathways	25-29
5	Score system and name of risk category	42
6	USEPA pesticide product toxicity and toxicity categories	59-60
7	Toxicity categories for aquatic systems	61
8	PAN acute toxicity categories and equivalences	61-62
9	Effect of soil type on attenuation factor and estimated recharge rate	66
10	Soil type and soil organic mater of selected area	75
11	Field data of selected areas	75
12	Climatic data for the selected period	76
13	Related reservoir data and catchments data used for risk assessment	76
14	Environmental half life $(t_{1/2})$, defined toxicity (T_{df}) , organic carbon	
	partition coefficient (Koc) and application data of pesticide.	77-78
15	Details of pesticides application	80
16	Pesticide application and first irrigation time	81
17	Details of pesticide product	86
18	Pesticides and concentration ranges used for calibration	99-100

19	Predicted risk of mobility and toxicity	103-104
20	Attenuation factor of the selected pesticides	105-106
21	Detected pesticide and their residue level in field well samples	116
22	Chromatographic conditions and Method Detection Limits of	
	HPLC method	120
23	Method detection limits and retention time of GC channels	121
24	Recoveries of analysed pesticides	122-123
25	Pesticides and retention order in GC/MSD	123
26	PIRI prediction and actual detection for ground water	139-140
27	PIRI prediction and actual detection for surface water	140

LIST OF FIGURS

1	Sketch map of Kalpitiya peninsula	7
2	Annual rain fall in Kalpitiya	8
3	Hydrological cross section of Kalpitiya peninsula	10
4	Annual rainfall distribution in Walawe area	11
5	Sketch map of Walawe special area	14
6	Land use of Walawe special area in 2002	17
7	Fate of pesticide in environment	21
8	Metabolic maps of pesticides	30-34
9	Effect of percentage of organic matter on AF	64
10	Effect of t $_{1/2}$ on attenuation factor	65
11	Estimated recharge rates for soil type	67
12	Contribution of surface runoff and erosion on total pollution potential	68
13	Effect of width of buffer zone on surface water	69
14	Effect of land slope on runoff pathway of pollution potential	70
15	Define toxicity and NOAEL for several pesticides	74
16	Sketch map of site used for field trial 1	81
17	Sketch map of plots applied with pesticide	84
18	Structure of irrigation well	85
19	Mixing of carbofuran with dry sand	87
20	Groundwater mobility impact for Walawe area	107
21	Groundwater mobility impact for Kalpitiya	108

22	Groundwater toxicity impact for Walawe area	109
23	Groundwater toxicity impact for Kalpitiya area	110
24	Surface water toxicity risk on Metigath Wewa and Kattakaduwa Wewa	111
25	Surface water mobility risk on Metigath Wewa and Kattakaduwa Wewa	112
26	Changes of Chlorpyrifos residue level along drainage line	114
27	Changes of Dimethoate residue level along drainage line	114
28.	Changes of 2, 4 D residue level along drainage line	115
29	Changes of MCPA residue level along drainage line	115
30	Detection profile of Carbofuran in FI- wells	118
31	Detection profile of Chlorpyrifos in FI- wells	118
32	Detection profile of Dimethoate in FI- wells	118
33	Liquid chromatograms of mixed standard solution	124-126
34	Liquid chromatograms of spiked water samples	127-128
35	Gas chromatograms	128-129
36	UV spectra of pesticides analysed by HPLC	130-133
37	Total ion chromatogram of GC/MSD	134
38	Mass spectrum of the standard pesticides	134-138
39	Leakage of irrigation water from damaged tubes	150
40	Effect of irrigation on groundwater pollution potential (Kalpitiya)	151
41	Maximum residue levels of pesticides and their drinking water guidelines	154

ACKNOWLEDGEMENT

I am greatly indebted to my supervisors, Dr. A. M. Mubarak, Director, Industrial Technology Institute and Dr. (Mrs.) Janitha A. Liyanage, senior lecturer, Department of Chemistry, University of Kelaniya, Kelaniya for valuable advises, continued guidance, encouragement and criticism given me to complete this project successfully.

I would like to express my cordial thanks to Dr. Sudantha Liyanage, Department of Chemistry, University of Sri Jayewardenepura, Gangodawila, Nugegoda for taking me as his student for my academic proceedings.

I cordially thank Dr. A. M. Mubarak, Director and Mrs. Sharmini Wickramaratne, Technical manager, CML for providing me the opportunity to carry out this study at ITI. I wish to express my thanks International Atomic Energy Agency for funding the project. I wish to thank to Mr. Gamini Gunawardena, ITI for his technical assistances.

I offer my grateful thank to Dr. Rai S. Kookana and Ray L. Correll, CSIRO, Australia for their assistance to handle the PIRI model.

I wish to thank Mr. Bathika Priyantha for his assistant in field works and I wish to thank all members of ITI who participated in the accomplishment of this research study.

I thank to my dear wife for her assistance given me by helping for field work and my day to day activities during this period.

Finally I wish to thank my family members and friends for their help during this period.

Assessment of impact of pesticides on water catchments and groundwater

in some selected areas of Sri Lanka

Ambalanyaya Gamaethige Piyal Aravinna

ABSTRACT

Environmentalists and general community are concerned about the impact of pesticides on the environment. Systematic methods of assessment of potential risk of pesticides to environmental components can serve as valuable tools in decision-making and policy formulation. The objectives of this study were; to rank commonly used pesticides in Sri Lanka according to their pollution potential on surface and groundwater using an indicator model, field residual monitoring to measure actual risk on surface and groundwater and compare with the observed risk with prediction of indicator model.

High recharge rate due to excessive irrigation, sandy soil with low organic matter and shallow water table depth are features of the Kalpitiya area which are expected to contribute to high risk on groundwater. Some surface water reservoirs which are fed by agricultural catchments, located in the Walawe area are used as sources for public water supplies therefore the surface water pollution potential is high. Kalpitiya peninsula and Walawe area were selected for the study.

Relative risk of pesticide in terms of mobility and toxicity on surface and groundwater were assessed using an indicator model namely Pesticide Impact Rating Index. Shallow domestic wells which were located around agricultural plots of both Walawe and Kalpitiya areas and the man made reservoirs in Walwe area were monitored for commonly used pesticides. According to PIRI prediction; out of commonly used pesticides in Kalpitiya area, Carbofuran and Dimethoate fall into "Extremely high" risk category and Imidaclorpride falls into "Very high" risk category for groundwater contamination potential. Out of commonly used pesticides in Walawe area Carbofuran and 2,4D fall into Extremely high and Very high risk categorise, respectively for groundwater mobility. The mobility risk of the selected pesticides for surface water of Kattakaduwa Wewa and Metigath Wewa is very low.

Applied pesticide on agricultural fields at the recommended rate(department of agriculture), were not found in wells which were located, 5-10 m away from the agricultural plots in Kalpitiya where Diazinon, Carbaryl, Methomyl, Imidacloprid, Fenthion, Captan, Carbofuran, Dimethoate, Chlorpyrifos and Oxyfluorfen are widely used and 1 to 3 m outside of the paddy fields in Walawe area where 2, 4 D, MCPA, Propanil, Diazinon, Carbofuran, Dimethoate, Chlorpyrifos, Oxyfluorfen and Fenthion are widely used. Residues of commonly used Pesticide were not detected in the reservoirs of Kattakaduwa Wewa, Metigath Wewa and Pathirana Wewa which are fed by either 100% drainage water or the reservoir of Habaralu Wewa, Kiri-ibban Wewa, Chandrika Wewa and Sooriya Wewa which are fed mainly by nonagricultural drainage. According to the field trials, when pesticides applied at the recommended rate and agricultural plots were irrigated at the average rate of 20mm/day, Dimethoate, Carbofuran, and Chlorpyrifos leached to 3m water table of Kalpitiya at 24±4 days, 25±3 days and 35±6 days after application of each pesticide respectively but Diazinon, Carbaryl, Methomyl, Imidacloprid, Fenthion, Captan, and Oxyfluorfen are not detected. The result from the case studies matched with the PIRI prediction, 100% for surface water and 74% for and groundwater.