ASSOCIATION OF RISK FACTORS FOR DEVELOPMENT OF CORONARY ARTERY DISEASE AND NUTRITIONAL AND IMMUNE STATUS ON THE RECOVERY FOLLOWING CORONARY ARTERY BYPASS SURGERY

By

Ekanayaka Mudiyanselage Samantha Bandara

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Biochemistry

2015

DECLARATION BY THE CANDIDATE

The work described in this thesis was carried out by me under the supervision of Prof. Sagarika Ekanayake (Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura), Dr. Aruna Kapuruge (Cardio-thoracic unit, Sri Jayewardenepura General Hospital, Nugegoda) and Prof. Chandanie Wanigatunge (Department of Pharmacology, Faculty of Medical Sciences, University of Sri Jayewardenepura) and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/ Diploma.

09.06 .2016

Date

Signature of the candidate

CERTIFICATION BY SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Staryght 10/06/16

Prof. Sagarika Ekanayake

Dr. Aruna Kapuruge

Cor ani pla 10/6/16

Prof. Chandanie Wanigatunge

CERTIFICATION BY SUPERVISORS

We certify that the candidate has incorporated all corrections, additions and amendments recommended by the examiners.

Sheneght 10/06/16

Prof. Sagarika Ekanayake

Attapen (10/00/16

Dr. Aruna Kapuruge

Cwanight 1096/16

Prof. Chandanie Wanigatunge

TABLE OF CONTENTS

		OF CONTENTSi
L	IST OF	TABLESv
L	IST OF	F FIGURESvii
A	BBRE	VIATIONSvii
A	CKNO	WLEDGEMENTxii
A	BSTRA	ACTxiii
1	INT	RODUCTION1
	1.1	General introduction1
	1.2	Scope of the thesis
2	LIT	ERATURE REVIEW5
	2.1	Coronary Artery Disease (CAD)5
	2.2	Pathogenesis of Coronary Artery Disease5
	2.3	Major risk factors for the development of CAD7
	2.3.1	Dyslipidemia8
	2.3.2	Dysglycemia10
	2.3.3	Hypertension11
	2.3.4	Smoking
	2.3.5	Obesity
	2.4	Biochemical risk markers of CAD18
	2.4.1	Lipoprotein (a)18
	2.4.2	C - reactive protein (CRP)20
	2.4.3	Interleukin-623
	2.4.4	Ferritin

2.4.5	Fibrinogen25
2.4.6	Uric acid
2.4.7	Thyroid hormones
2.4.8	Cortisol
2.4.9	Total antioxidant capacity
2.5	Gensini score
2.6	Factors (nutritional, immune and other markers) affecting recovery
follow	ing CABG surgery32
2.6.1	EuroSCORE II
2.6.2	2 CRP
2.6.3	Antioxidant capacity
2.6.4	Albumin
2.6.5	Vitamins A and E
2.6.6	5 Interleukin – 6
2.6.7	Glucose -6- phosphate dehydrogenase deficiency
3 MA'	TERIALS AND METHODS
3.1	Materials
3.1.1	Water
3.1.2	
3.1.3	
3.1.4	
3.2	Methods
3.2.1	Study sample
3.2.2	2 Study design

3	.2.3	Questionnaire study for risk factor assessment	
3	.2.4	Anthropometric parameters	
3	.2.5	Data from Bed Head Ticket	
3	.2.6	Biochemical assays	1000
3	.2.7	Gensini score calculation for the assessment of severity of CAD	
3	.2.8	EuroSCORE - II for Cardiac Operative Risk Evaluation	
3	.2.9	Outcome measures of recovery	
3.3	Et	hical clearance	1
3.4	St	atistical analysis59	,
4 F	RESUL	.TS	
4.1	4.1 Questionnaire study60		
4.2	4.2 Anthropometric measurements70		
4.3	Bi	ochemical measurements and severity of CAD73	;
4	.3.1	Association of risk factors and biochemical parameters78	3
4	.3.2	Correlation between severity of CAD (Gensini Score) and conventional	
r	isk fac	tors	2
4	.3.3	Correlation between severity of CAD (Gensini Score) and biochemical	
n	neasure	ements	2
4.4	Рі	re and post-operative nutritional status82	2
4	4.4.1	Pre and post-operative vitamin A and vitamin E82	2
4.5	Р	re- and post-operative surgical outcomes89)
5 1	DISCU	SSION	5
6 (CONC	LUSIONS	8

7	REFERENCES123
	Appendix I Publications and communications
	Appendix II A copy of the questionnaire given to patients
	Appendix III Data collection sheet from BHT and otherclinical records
	Appendix IV (a) Calibration curves of AST, ALT and total bilirubin176
	Appendix IV (b) Calibration curves of blood urea and uric acid
	Appendix V (a) Levey -Jennings control charts for AST and ALT
	Appendix V (b) Levey-Jennings charts for total bilirubin andblood urea179
	Appendix V (c) Levey-Jennings control charts for uric acid
	Appendix VI Calibration and Levey-Jennings chart for Lp (a)181
	Appendix VII Calibration and Levey-Jennings chart for CRP182
	Appendix VIII A copy of the Ethical Approval letter- University of Sri
	Jayewardenepura
	Appendix IX A copy of the Ethical Approval letter- Sri Jayewardenepura General
	Hospital
	Appendix X Leaflet of information on lifestyle changes

LIST OF TABLES

Table 2.1 Risk factors for CAD 8
Table 2.2 The WHO proposed cut-off value of BMI and waist circumference for Asians
and WHO recommended cut-off for WHR17
Table 3.1 Gensini score according to luminal narrowing
Table 3.2 Multiplying factor according to location of lesion
Table 3.3 Cardiac operative risk evaluation data 58
Table 4.1 Frequency of socio-demographic and socioeconomic characteristics
Table 4.2 Disease related risk factors
Table 4.3 Behavioral risk factors 64
Table 4.4 Distribution of family history 65
Table 4.5 Distribution of combination of risk factors
Table 4.6 Consumption of animal foods 68
Table 4.7 Consumption of vegetables, fruit and other foods 69
Table 4.8 Measured and calculated anthropometric measurements70
Table 4.9 Distribution of BMI according to risk factor and family history72
Table 4.10 Pre-operative lipid measurements and Gensini score75
Table 4.11 Pre and post-operative biochemical measurements76
Table 4.12 Pre-operative thyroid profile, cortisol and ferritin77
Table 4.13 Correlation between CAD severity and Gensini score 83
Table 4.14 Within day variation in retention times of all trans- retinol and α - to copherol
Table 4.15 Day to day variation in retention times all trans- retinol and α - tocopherol 84
Table 4.16 Chromatographic areas for different concentrations of all- trans- retinol85

Table 4.17 Chromatographic areas for different concentrations of standard α -tocophere	Л
	8
Table 4.18 Pre and post-operative nutritional parameters 8	8
Table 4.19 Surgery related outcomes	0
Table 4.20 The ICU and hospital stay of patients with and without post-operativ	/e
infections9	91
Table 4.21 Variation of biochemical, nutritional and other surgery related paramete	rs
with infection)3

LIST OF FIGURES

Figure 2.1 Pathogenesis of CAD7
Figure 2.2 Visceral fat and cardio vascular disease16
Figure 2.3 Component of Lp(a) particle
Figure 2.4 Pathogenesis of CRP in atherosclerosis and atherothrombosis
Figure 2.5 Antioxidant-prooxidant uric acid shuttle
Figure 2.6 Coronary artery bypass graft
Figure 3.1 Principle of AST determination
Figure 3.2 Principle of ALT determination45
Figure 3.3 Principles of urea determination
Figure 3.4 Test principle of mini-Vidas auto analyzer
Figure 3.5 Methaemoglobin reduction test55
Figure 3.6 Multiplying factor according to location of lesion
Figure 4.1 Consumption of animal and high fat diet in dyslipidemic aware and non-
aware group70
Figure 4.2 Distribution of BMI according to WHO proposed categories according to
gender71
Figure 4.3 Standard curve for IL-6
Figure 4.4 Standard curve for Trolox
Figure 4.5 Standard curve for vitamin A
Figure 4.6 Standard curve for vitamin E87
Figure 4.7 ROC curve for pre-operative TAC and post-operative infections94
Figure 4.8 ROC curve for post-operative TAC with infections

ABBREVIATIONS

ABTS	2,2'-azino bis 3-ethylbenzthiazoline-6-sulfonic acid
ACS	Acute coronary syndrome
АСТН	Adrenocorticotrophic hormone
ALT	Alanine amino transferase
AMI	Acute myocardial infarction
AST	Aspartate amino transferase
AT-1	Angiotensin type-1
AUC	Area under the curve
ВНТ	Bed head ticket
BMI	Body mass index
BMR	Basal metabolic rate
BU	Blood urea
CABG	Coronary artery bypass graft
CAD	Coronary artery disease
CHD	Coronary heart disease
CRP	C - reactive protein
DM	Diabetes mellitus
DYS	Dyslipidemia
EDTA	Ethylenediaminetetraacetic acid
eNOS	Endothelial nitric oxide synthase
ET-1	Endothelian-1

FT3	Free tri-iodothyronine
FT4	Free tetraiodothyronine
G-6-PD	Glucose-6-phosphate-dehydrogenase
НЬ	Hemoglobin
HDLc	High density lipoprotein cholesterol
НРА	Hypothalamic-pituitary-adrenal
HPLC	High performance liquid chromatography
HR	Hazard ratio
HTN	Hypertension
ICAM-1	Intercellular adhesion molecule-1
ICU	Intensive care unit
IHD	Ischemic heart disease
IL-6	Interleukin-6
iNOS	Inducible nitric oxide synthase
LAD	Left anterior descending
LCX	Left circumflex
LDLe	Low density lipoprotein cholesterol
LOD	Limit of detection
Lp(a)	Lipoprotein (a)
MAC	Mid arm circumferences
MCP-1	Monocyte chemotactic protein-1
MI	Myocardial infarction

ix

NEFA	Non-esterified fatty acids
NF-кB	Nuclear factor kappa B
NO	Nitric oxide
NYHA	New York Heart Association
PAI-1	Plasminogen activator inhibitor -1
PE	Petroleum ether
RBP-4	Retinol binding protein 4
RCA	Right coronary artery
ROC	Reactive operative characteristic
ROS	Reactive oxygen species
SCr	Serum creatinine
sICAM-1	Soluble Intercellular adhesion molecule-1
SPR	Solid phase receptacle
TAC	Total antioxidant capacity
ТВ	Total bilirubin
ТС	Total cholesterol
TEAC	Trolox equivalent antioxidant capacity
TF	Tissue factor
TFPI-1	Tissue Factor Pathway inhibitor 1
TG	Triglyceride
TGF-β	Transforming growth factor β

X

TSH3	Thyroid stimulating hormone - 3 rd generation
UA	Uric acid
VCAM-1	Vascular cell adhesion molecule-1
WBC	White blood cells
WC	Waist circumference
WHO	World Health Organization
WHR	Waist to hip ratio

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to Prof. Sagarika Ekanayake (Supervisor) who consistently supported me and provided her guidance and encouragement to complete this postgraduate research. Further, I would like to express my heartfelt gratitude to my co-supervisors, Dr. Aruna Kapuruge and Prof. C.A Wanigatunge for their helpful scientific suggestions and assistance.

I wish to thank all the patients who participated in the study, to all the staff of Cardiothoracic unit (Ward 20 and Cardio-thoracic intensive care unit) and Medical Records unit of Sri Jayewardenepura General Hospital, Thalapathpitiya, Nugegoda for their constant support and help given throughout the study period for collection of specimen and data. My sincere thanks go to Mr. G A S Kumara (Perfusionist, Cardio-thoracic unit) for his valuable contribution to success of this project.

I am highly indebted to the National Science Foundation (financial support was given by the NSF/RG/2011/HS/18 grant) because without their support this study would not have been a success.

I also take this opportunity to express my gratitude to Prof. Renu Wickramasinghe and the staff of the Department of Parasitology for their support on Interleukin-6 analysis and Dr. W.A.A Wijayasiri, Dr. S. Prathapan and the staff of the Department of Community Medicine for their support on statistical analysis.

I am grateful to my mother and all the family members for all the encouragement and support they provide me. I would also like to thank all my research colleagues who support me in various ways. Finally, I would like to thank all the academic and nonacademic staff of the Dept. of Biochemistry, FMS, USJ for helping me in various ways.

Association of risk factors for development of coronary artery disease and nutritional and immune status on the recovery following coronary

artery bypass surgery

E.M.S. Bandara

ABSTRACT

Cardiovascular diseases are the major cause for mortality of men and women worldwide. In Sri Lanka 40% of proportional mortality is due to cardiovascular diseases. Coronary Artery Disease (CAD) is a major disease categorized under Cardiovascular Diseases. One of the most common treatment modes for CAD is Coronary Artery Bypass Graft (CABG). Though the risk factors (conventional and emerging) related to development of CAD are documented in Sri Lanka, the data pertaining to Sri Lankans needs to be analysed with its association with severity of the disease and the need for surgery (CABG). In addition data with regard to the effect of nutritional or immune capacity on the recovery of patients undergoing CABG is not available in Sri Lanka. The objectives of this study were to determine the association between CAD risk factors, disease severity and recovery following CABG and to determine the effect of nutritional and immune status and other factors on recovery following CABG.

Conventional risk factors, demographic data, anthropometric data and data related to current food consumption were collected using an interviewer administered questionnaire from patients awaiting CABG. Pre and post-operative blood samples were collected to analyse biochemical [lipid profile, thyroid profile, cortisol, lipoprotein (a), C-reactive protein, liver functions, blood urea, serum creatinine and uric acid], C-reactive protein, liver functions, blood urea, serum creatinine and uric acid], nutritional [albumin, vitamin A, vitamin E, ferritin, total antioxidant capacity (TAC)] and immune (interleukin-6 [IL-6]) parameters. The pre and postoperative information related to bypass surgery were collected. The severity of CAD was measured by Gensini score. Recovery was correlated to the number of days of stay at ICU and hospital. EuroSCORE II was used to predict mortality following cardiac surgery.

Patients (n = 102) awaiting CABG surgery were enrolled for the study. The mean age for presenting for CABG was 57 years. Around 60% of individuals were urban dwellers. The percentage distribution of hypertension, diabetes mellitus and dyslipidemia were 70.6%, 53.9% and 87.3% respectively. The percentage of hypertensive females were significantly (p=0.000) higher compared to the male patients. The current or previous alcohol users and smokers among males were 25.5% and 44%. From the total 53.9%, had a family history of CHD. A significantly high (p=0.001) possibility of developing CHD was observed in females who had a family history of CHD. An association between the severity of CAD and EuroSCORE II with above parameters was not observed.

The percentages of overweight, obese I and obese II categories are comparatively higher in females (80%) than males (53.8%). All females had their waist circumference > 80cm while 97.1% of females had their waist: hip ratio > 0.8. Mid arm circumference of both males and females were higher than normal reference range (< 24 cm).

The females had significantly high concentration of total cholesterol (p=0.001), low density lipoprotein cholesterol (p=0.02) and also high density lipoprotein cholesterol (p=0.02). Lipoprotein (a) concentration was not significantly different between males and females. Around 2/3 of patients had Lp(a) concentration >30mg/dL. Lipoprotein (a)

concentration of individuals diagnosed as dyslipidemic (males-46.9 \pm 36.4 mg/dL, females-54.1 \pm 42.0 mg/dL) and non dyslipidemic (males-48.6 \pm 40.3 mg/dL, females-51.5 \pm 41mg/dL) were not significantly different. Another CHD risk marker, CRP concentration (6.8 \pm 8.2 mg/L) was slightly higher than normal reference (< 6 mg/L) prior to surgery and increased following surgery (214.3 \pm 57.1mg/L). The average fibrinogen was 290 \pm 60.7 mg/dL, also within normal range.

Pre-operative AST, ALT, total bilirubin, uric acid, blood urea and creatinine concentrations were 36.8 ± 14.6 IU/L, 29.4 ± 16.6 IU/L, 12.2 ± 5.8 IU/L, 353 ± 123 µmol/L, 5.6 ± 3.0 µmol/L and 102.3 ± 33.6 µmol/L respectively and were within the normal ranges. Post-operative concentrations of ALT (40.1 ± 28.1 IU/L), total bilirubin (17.5 ± 10.9 IU/L), uric acid (381 ± 125.7 µmol/L) and creatinine (117 ± 42.3 µmol/L) were also within the reference ranges. However, post-operative AST (83.4 ± 51.6 IU/L) and blood urea (7.7 ± 3.2 µmol/L) were significantly high.

Free T3, T4 and TSH were 3.9 ± 1.0 pmol/L, 15 ± 3.3 pmol/L and 3.0 ± 3.7 µUI/ml respectively. Subclinical hypothyroidism among males is 16.4% with no hypothyroid individuals. Among females 8.6% were hypothyroid and 11.4% were subclinically hypothyroid.

The cortisol (111.1±43.4 ng/ml) was within the normal reference range at the time of measurement. Pre-operative vitamins A (70.3±32.2 μ g/dL) and E (9.3±4.9 μ g/dL) were significantly low post-operatively [A (45.9±19.0 μ g/dL, p= 0.000) and E (7.8±2.8 μ g/mL, p=0.006)]. Serum ferritin (138.7±137.5 μ g/L) was within the normal range prior to surgery. Pre-operative albumin (47.0±3.7 g/L) was significantly higher than post-operative (42.5±3.3 g/L) concentration. Pre-operative total antioxident capacity (TAC) was 6.5±1.3 μ g TEAC /10 μ l with low postoperative (6.2±1.2 μ g TEAC /10 μ l)

concentration. The severity of coronary artery disease measured by Gensini score for dyslipidemic and non dyslipidemic males were 51.4±23.5 and 51.5± 27.8 respectively. The Gensini score had significant positive correlations with cortisol (r= 0.307, p=0.005) and with ferritin (r=0.2, p=0.005). There was no significant correlation between conventional risk factors, other biochemical, nutritional and immune markers with severity of CAD. Pre-operative IL-6 (17.1±73.3 pg/mL) increased postoperatively (255.4±214.7 pg/mL). Pre (p=0.008) and post (p=0.01) operative TAC and postoperative IL-6 (p=0.006) was significantly high in patients who developed infections during hospital stay. Pre-operative TAC can predict incidence of post-operative infections with 56% sensitivity and 74% specificity, 5.9 µg TEAC /10µl as cut-off value. Similarly post-operative TAC also can predict the incidence of post-operative infections with 78% sensitivity and 45% specificity at 6.6 µg TEAC /10µl as cut-off value. Odds ratios (OR) elevation of pre-operative albumin (1.2, 95% CI 1-1.3), postoperative IL-6 (1, 95% CI 0.9-1.0) and pre-operative TAC (0.6, 95% CI 0.39-0.98) concentrations associated positively with individuals who have developed infections when compared to individuals with no infections.

According to the surgical procedures the highest numbers of grafts performed were 3 and 4 grafts with 44.6% and 41.6% of patients respectively. Cardiac surgery risk model, EuroSCORE II was 1.4 ± 0.7 %. EuroSCORE II had positive significant correlations with Gensini score (r= 0.4, p=0.006) and ICU stay (r=0.3, p=0.04) only. The average hospital and ICU stay was 16.6 ± 14.4 and 5.4 ± 2.5 days respectively. Post-operative infections developed in 27.3% of the patients.

In conclusion, among the conventional risk factors, dyslipidemia was the most frequent risk factor among both males and females. There was a higher possibility (26%) of contribution for CHD if the parents had CAD compared to siblings. Animal food intake was within the recommended intake once diagnosed as having CHD. Almost 75% of the study sample was obese and 97% of females had W: H ratio above the recommended values and indicate the need for life style change. Even though the lipid profile parameters were within the normal range the lipoprotein (a) was high irrespective of risk factors indicating that this can be considered as a good marker for identification of individuals susceptible for CHD in Sri Lankan population following further studies.

Among the patients a moderately high percent of individuals with subclinical hypothyroidism and hypothyroidism were present. Serum cortisol and ferritin concentrations above 141 ng/mL and 160 µg/L were indicative of increased severity of CAD as calculated by Gensini score and could be used as markers to assess the severity of CAD. No correlations were observed with risk factors, other biochemical, nutritional and immnulogical parameters and severity of CAD.

Interleukin-6 and TAC can be considered as markers for predicting development of post-operative infections. EuroScore II correlated with severity of disease and the duration of ICU stay. In addition pre-operative TAC, post-operative IL-6 and EuroSCORE II could be considered as predictors of prolonged hospital stay following surgery.