CHEMISTRY AND BIOLOGICAL ACTIVITIES OF THE PROANTHOCYANIDINS OF THE INFLORESCENCE OF *COCOS NUCIFERA* L, AN AYURVEDIC DRUG IN THE TREATMENT OF GYNAECOLOGICAL DISORDERS

By

H.D.K. Dharmadana

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Chemistry in

August 2015

DECLARATION

"The work described in this thesis was carried out by me under the supervision of Dr. (Mrs.) C. Padumadasa (Senior Lecturer, Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda), Prof. A. M. Abeysekera (Senior professor, Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda), Dr. (Ms.) M. G. Thammitiyagoda (Head, Animal Centre, Medical Research Institute, Colombo 8) and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma."

17/08/2015

Signature

Date

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation.

17/08/2015

Chapant Pall

Dr. (Mrs.) C. Padumadasa

Senior Lecturer

Department of Chemistry

University of Sri Jayewardenepura

17/08/2015

Date

AmAberycehem

Prof. A. M. Abeysekera

Department of Chemistry

University of Sri Jayewardenepura

Date

Date

M. G. Thermich yas also.

Dr. (Ms.) M. G. Thammitiyagoda

Head of Animal Centre

Medical Research Institute

We certify that all the corrections have been done in accordance to the comments and suggestions of the examiners.

17/08/2015

Date

Chayan'h Pall

Dr. (Mrs) C. Padumadasa

Senior Lecturer

Department of Chemistry

Uni. of Sri Jayewardenepura

Nugegoda

17/08/2015-

Date

M. h. Themmitigageden

Dr. (Ms) M.G. Thammitiyagodage

Head of Animal Centre

Medical Research Institute

Colombo 08

CONTENTS

	Page
LIST OF TABLES	i
LIST OF FIGURES	iii
LIST OF ABBREVIATIONS	vi
ACKNOWLEDGEMENT	x
ABSTRACT	xii
1.0 INTRODUCTION	
1.1 General introduction	1
1.2 Cocos nucifera L.	4
1.2.1 Classification of Cocos nucifera L.	5
1.2.2 Inflorescence of Cocos nucifera L.	6
1.2.3 Ethnopharmacological usages and biological activities	
of Cocos nucifera L.	8
1.3 Proanthocyanidins	10
1.3.1 Structure of proanthocyanidins	10
1.3.2 Nomenclature	18
1.3.3 Physicochemical properties	19

1.3.4 Characterization of proanthocyanidins	21
1.3.4.1. Characterization of proanthocyanidins by	
chromatographic methods	21
1.3.4.1a. HPLC	21
1.3.4.1b. Size exclusion chromatography	24
1.3.4.1c. High-speed counter-current chromatography	25
(HSCCC)	
1.3.4.2. Characterization of proanthocyanidins by spectros	copic
methods.	26
1.3.4.2a. Mass spectrometry	27
1.3.4.2b. NMR spectroscopy	30
1.3.5. Absorption and bioavailability of proanthocyanidins	32
1.3.6. Bioactivities of proanthocyanidins	35
1.3.6.1. Antioxidant activity	35
1.3.6.2. Anti-inflammatory activity	38
1.3.6.3. Anticancer activity	42
1.3.6.4. Antimicrobial activity	45
1.3.6.5. Cardioprotective effects	48

1.3.6.6. Bioactivities other than those covered in section

1361 - 1365	50
1.5.0.1 1.5.0.5	50

52

1.4. Menorrhagia

2.0 METHODS AND MATERIALS

3 1	NA -	4
2.1	Ma	terials

	2.1.1 General procedures	56
	2.1.2 Chromatography	57
	2.1.3 Chemicals	57
	2.1.4 Statistical analyses	58
	2.1.5 Plant materials	58
2.	2. Methods	
	2.2.1. Moisture content	60
	2.2.2. Extraction and purification	60
	2.2.2.1 Tests for phenols and proanthocyanidins used to	
	monitor column fractions	61
	2.2.2.1a. Prussian blue test	61
	2.2.2.1b. Acid catalyzed cleavage test	62

2.2.3. Extraction of proanthocyanidins from <i>Cocos</i> <i>nucifera</i> L. inflorescences at different maturity stages 63		
assay (Porter et al., 1986)	63	
2.2.4.1. Preparation of calibration curve	63	
2.2.4.2. Preparation of sample solutions	64	
2.2.4.3. Acid butanol assay	64	
2.2.5. Characterization of proanthocyanidins		
2.2.5.1. Acid catalyzed cleavage studies	65	
2.2.5.2. Thiolytic Studies	66	
2.2.5.2a. HPLC	66	
2.2.5.2b. LC-MS	67	
2.2.5.2c. Preparative HPLC	67	
2.2.5.2d. NMR spectroscopy	68	
2.2.5.3. NMR spectroscopy	69	
2.2.5.4. Mass spectrometry	69	

2.2.6.1. MCI gel column chromatography for EASPA	69
2.2.6.2. MCI gel column chromatography for AQSPA	71
2.2.6.3. Acetylation of proanthocyanidins	72
2.2.7. Bioactivity studies	
2.2.7.1. Effect of EASPA and AQSPA on reproductive	
hormone levels and endometrium of female rats	\$
2.2.7.1a. Experimental animals	73
2.2.7.1b. Test method	74
2.2.7.1c. Sample collection	75
2.2.7.1d. Histology of endometrium	76
2.2.7.2. In vitro bioassays	
2.2.7.2a. Antioxidant activity	77
2.2.7.2b. Anti-inflammatory activity	79
2.2.7.2c. Anticancer activity	80

2.2.6. Separation of oligomeric proanthocyanidins

3.0 RESULTS AND DISCUSSION

3.1 Extraction and purification	82
3.2. Variation of proanthocyanidin content in the	
inflorescence with the maturity	85
3.3. Distribution of proanthocyanidins in the inflorescence	86
3.4. Monomeric composition	93
3.5. Thiolysis of proanthocyanidins	94
3.6 The ¹³ C NMR spectroscopy	99
3.7. Oligomeric distribution of EASPA	102
3.8. Separation of oligomers in EASPA and AQSPA	104
3.9. Effect of EASPA and AQSPA on reproductive hormone	
levels and endometrium of female rats	
3.9.1. Reproductive hormone levels	107
3.9.2. Histology of rat uterus	114
3.10. In vitro bioactivities of EASPA and AQSPA	
3.10.1. Antioxidant activity	120
3.10.2. Anti-inflammatory activity	124
3.10.3. Anticancer activity	127

4.0 CONCLUSIONS	130
5.0 REFERENCES	132
6.0 APPENDIX	177

LIST OF TABLES

	Page
Table 2.1. Details of treatment and tested parameters of test and	
control groups	74
Table 3.1. The yield of EASPA and AQSPA respect to the different	
maturity stages of inflorescences of Cocos nucifera L. (on fresh weight	
basis)	86
Table 3.2. Proanthocyanidin content of floral parts of the Cocos nucifera	
L. inflorescence at stage-1 maturity	92
Table 3.3. Effect of EASPA and AQSPA on uterus weight, length of	
oestrous cycle and progesterone level of female rats	113
Table 3.4. Effect of EASPA and AQSPA on uterus weight, length of	
oestrous cycle and oestrogen level of female rats	113
Table 3.5. DDPH and SOR radical scavenging activity of EASPA	
and AQSPA of inflorescence of Cocos nucifera L.	124
Table 3.6. Anti-inflammatory activity of EASPA and AQSPA of	

i

inflorescence of Cocos nucifera L.

Table 3.7. Cytotoxic activity of EASPA and AQSPA of

inflorescence of *Cocos nucifera* L. towards HeLa and PC3 cell lines 128

LIST OF FIGURES

	Page
Figure 1.1. The inflorescence of Cocos nucifera L.	8
Figure 1.2. Basic skeleton of Diphenylpropanoids	11
Figure 1.3. Principal naturally occurring flavan-3,4-diols	12
Figure 1.4. Chemical structures of typical flavan-3-ol units	13
Figure 1.5. Proanthocyanidin dimers showing B type and A type linkages	15
Figure 1.6. Fragmentation of dimeric procyanidin by QM, RDR and HRF	
mechanisms.	29
Figure 2.1. Schematic diagram of different maturity stages of	
inflorescences within the coconut palm	59
Figure 2.2. Top, middle and base sections of the Cocos nucifera L.	
inflorescence	64
Figure 3.1. The formation pathway of reaction products of the acid	
butanol assay	88
Figure 3.2. The calibration plot of proanthocyanidins from the inflorescent	ce of
Cocos nucifera L.	90

Figure 3.3. Proanthocyanidin content along the length of the	
Cocos nucifera L. inflorescence at different stages of maturity	91
Figure 3.4. Acid catalyzed cleavage of a procyanidin trimer	94
Figure 3.5. Acid catalyzed cleavage of a procyanidin dimer in the	
presence of benzyl mercaptan	95
Figure 3.6. HPLC chromatogram of benzyl thioether fraction I of	
EASPA	96
Figure 3.7. HPLC chromatogram of benzyl thioether fraction II of	
EASPA	96
Figure 3.8. HPLC chromatogram of benzyl thioether fraction III of	
EASPA	97
Figure 3.9. Thiolysis products of EASPA and AQSPA from the	
inflorescence of Cocos nucifera L.	99
Figure 3.10. ¹³ C-NMR spectrum of EASPA from the inflorescence of	
Cocos nucifera L.	101
Figure 3.11. Oligomers detected in mass spectrum of EASPA from the	
inflorescence of Cocos nucifera L.	103

iv

Figure 3.12. ESI-MS of EASPA from the inflorescence of Cocos nucifera	
L.	104
Figure 3.13. MS/MS spectrum of the ion at m/z 579 (epicatechin dimer)	105
Figure 3.14. Unstained vaginal smears of control group female rats	
at proestrous (PE), oestrous (OE), metestrous (ME) and diestrous (DE)	
phases	109
Figure 3.15. Change of progesterone and oestrogen levels of female	
rats during the oestrous cycle	110
Figure 3.16. Variation of mean body weight during the study period	
of female rats assayed for progesterone	111
Figure 3.17. Variation of mean body weight during the study period	
of female rats assayed for oestrogen	112
Figure 3.18. Rat uterus in situ	114
Figure 3.19. Labeled diagram of reproductive tract of female rat	115
Figure 3.20. Rat uterus at proestrous (a) and oestrous (b) phases	118
Figure 3.21. Reaction of DPPH free radical to DPPH non radical	122

LIST OF ABBREVIATIONS

ABTS	2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)
ACE	Angiotensin converting enzyme
AQSPA	Aqueous soluble proanthocyanidin fraction
AQSPAF1	30 % aqueous methanol soluble fraction of AQSPA
AQSPAF2	50 % aqueous methanol soluble fraction of AQSPA
BAL	Bronchoalveolar lavage
COX-2	Cyclooxygenase-2
DEPT	Distortionless Enhancement by Polarization Transfer
DHB	2, 5-Dihydroxybenzoic acid
DMAC	4-(dimethylamino)-cinnamaldehyde
DPPH	1,1-diphenyl-2-picrylhydrazyl
DP	Degree of polymerization
DMSO	Dimethyl Sulfoxide
DMEM	Dulbecco's Modified Eagle Medium
DUB	Dysfunctional uterine bleeding
EASPA	Ethyl acetate soluble proanthocyanidin fraction
EASPAF1	20 % aqueous methanol soluble fraction of EASPA
EASPAF2	30 % aqueous methanol soluble fraction of EASPA
EASPAF3	50 % aqueous methanol soluble fraction of EASPA
EDR	Endothelium-dependent relaxation
ESI-MS	Electrospray Ionization Mass Spectrometry
FAB-MS	Fast-atom bombardment mass spectrometry

vi

FBS	Fetal bovine serum
FIA-ESI-IT-MS ⁿ	Flow injection analysis electrospray ionization ion trap tandem mass spectrometry
FSH	Follicle-stimulating hormone
GP	General Practitioner
GnRH	Gonadotropin-releasing hormone
HBSS	Hanks' balanced salt solution containing calcium chloride and magnesium chloride
HeLa cell line	Cervical cancer cell line
HMB	Heavy menstrual bleeding
HPLC	High performance liquid chromatography
HPLC/ESI-MS	HPLC coupled to ESI-MS
HIV	Human immunodeficiency virus
HSV	Herpes simplex virus
HSCCC	High-speed counter-current chromatography
IAA	trans-3-indoleacrylic acid
IC50	Half maximal inhibitory concentration
IKK	IkB kinase
ΙκΒ	Inhibitor of NF-κB
IL-6	Interleukin 6
iNOS	inducible nitric oxide synthase
LC-MS	Liquid chromatography-mass spectrometry
LC-ESI-MS	Liquid-chromatography-electrospray ionization-mass spectrometry
LDL	Low-density linoprotein

LNG-IUS	Levonorgestrel-releasing intrauterine system
LSIMS	Liquid secondary ion mass spectrometry
Luminol	3-aminophthalhydrazide
MALDI-TOF-MS	Matrix-assisted laser desorption / ionization - time-of-flight mass spectroscopy
МАРК	Mitogen-activated protein kinase
mDP	Mean degree of polymerization
MIC	Minimum inhibitory concentration
MS	Mass spectrometry
MMP	Matrix metalloproteinase
MTT	(3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyl tetrazolium bromide)
NADH	β-nicotanamide adenine dinucleotide
NBT	Nitro blue tetrazolium
NF-κB	Nuclear factor kappa-light-chain-enhancer of activated B cell
nNOS	neuronal nitric oxide synthases
NP-HPLC	Normal–phase HPLC
NMR	Nuclear magnetic resonance
NSAIDs	Non-steroidal anti-inflammatory drugs
ODC	Ornithine decarboxylase
ONOO ⁻	Peroxynitrite
PC3 cell line	Prostate cancer cell line
PhIP	2- amino-1-methyl-6-phenylimidazo (4, 5-b) pyridine
PI-3	Phosphoinositide 3
PMS	Phenazine methosulphate

•.

viii

RDA	Retro Diels-Alder
R _f	Retention factor
RI	Refractive index
RLU	Relative Light Units
RNI	Reactive nitrogen intermediates
ROS	Reactive Oxygen Species
RP-HPLC	Reverse-phase HPLC
RP-TLC	Reverse-phase TLC
SEC	Size exclusion chromatography
SEM	Standard Error of the Mean
SOR	Superoxide radical
SOZ	Serum Opsonized Zymosan
TEAC	Trolox equivalent antioxidant activity
TGF β1	Transforming growth factor β1
TLC	Thin-layer chromatography
ΤΝΓ-α	Tumor necrosis factor α
UV	Ultraviolet
UVB	Ultraviolet B
UTIs	Urinary tract infections
WHO	World health organization

ix

ACKNOWLEDGEMENT

I am using this opportunity to express my gratitude to everyone who supported me throughout this project.

First and foremost, I would like to express my special appreciation and thanks to my principal supervisor Dr. Chayanika Padumadasa, Senior Lecturer, Department of Chemistry, University of Sri Jayewardenepura without her assistance and dedicated involvement in every step throughout the process, this project has never been accomplished. I would like to thank you for encouraging my research work and for allowing me to grow as a researcher. Your advice on both research as well as on my career have been priceless. I would also like to offer my sincerest gratitude to my cosupervisor Prof. Ajit Abeysekera, Senior Professor, Department of Chemistry, University of Sri Jayewardenepura who has been a tremendous mentor for me. I am thankful for his aspiring assistance, patience, enthusiasm, immense knowledge and especially constructive criticism and friendly advice during the project work. I express my warm thanks to co-supervisor Dr. Mayuri Thammitiyagodage, Head of Animal Centre, Medical Research Institute for her support and guidance in animal experiments. Without her guidance in animal handling, I would never have been able to handle animals properly.

I would like to express my deepest gratitude to Prof. M. Iqbal Choudhary and entire H.E.J Research Institute, University of Karachi, Pakistan for providing spectroscopic, chromatographic and bioassay services. I would also like to thank Dr. Bimalka Senevirathne at Department of Pathology (Faculty of Medical Sciences, University of Sri Jayewardenepura), Dr. Marliya Ismail at Faculty of Chemical Engineering, University of Moratuwa and Prof. U. G. Chandrika at Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura for providing histological, freeze drying and HPLC facilities respectively. I thank to Bureau Veritas Consumer Products Service Lanka (Pvt.) Ltd for providing LC-MS services. In addition, I would like to express my gratitude to all technical staff at Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura for their invaluable support.

I thank my fellow labmates in Postgraduate Research Laboratory, Department of Chemistry, University of Sri Jayewardenepura for their helpful encouragement and tireless assistance.

This research work was financially supported by the university research grant (ASP/06/RE/SCI/2010/11) of University of Sri Jayewardenepura. Their financial support is gratefully acknowledged.

Finally, I would like to express my deepest gratitude to my husband, for his support and patience through this whole process and to my parents for their faith in me.

CHEMISTRY AND BIOLOGICAL ACTIVITIES OF THE PROANTHOCYANIDINS OF THE INFLORESCENCE OF *COCOS NUCIFERA* L, AN AYURVEDIC DRUG IN THE TREATMENT OF GYNAECOLOGICAL DISORDERS

H.D.K. Dharmadana

ABSTRACT

The immature inflorescence of *Cocos nucifera* L. variety aurantiaca is used by Ayurvedic and traditional medical practioners for the treatment of menorrhargia in Sri Lanka. A preliminary phytochemical screening carried out by our research group had shown that the inflorescence of *Cocos nucifera* L. contains high levels of proanthocyanidins. The reported presence of proanthocyanidins in *Saraca asoka* which is also used in the treatment of menstrual disorders suggests that proanthocyanidins may play a role in the treatment of menorrhagia. Given the predominance of proanthocyanidins in the inflorescence of *Cocos nucifera* L. we hypothesized that they play a role in controlling menorrhagia by influencing the reproductive hormone levels. The proanthocyanidins of the inflorescence of *Cocos nucifera* L. were extracted with aqueous acetone (70 %) and separated into two fractions: an ethyl acetate soluble proanthocyanidin fraction (EASPA) and aqueous soluble

proanthocyanidin fraction (AQSPA). The total proanthocyanidin yield was 5.66 % on dry weight basis. Purification using chromatography on sephadex LH-20 yielded purified EASPA and AQSPA as off white powders in 0.03 % and 0.26 % respectively. Purified EASPA and AQSPA were characterized by 13C NMR spectroscopy, ESI-MS, acid catalyzed cleavage studies and thiolysis followed by LC-MS and NMR spectroscopy (¹H and ¹³C NMR). Acid catalyzed cleavage and thiolysis studies revealed that EASPA and AQSPA are made up of epicatechin and epiafzelechin units. The ¹³C NMR analysis of EASPA and AQSPA showed typical signals for epicatechin units and no detectable signals for epiafzelechin units. This indicates that both fractions are comprised mainly of epicatechin units and some epiafzelechin units. This was further confirmed by ESI-MS data for EASPA. The peaks at m/z 579, 867, 1155 and 1443 correspond to molecular masses (M+H)⁺ of epicatechin units with degree of polymerization ranging from 2-5 respectively, while mixed oligomers of epicatechin and epiafzelechin were detected at m/z 563 and 851 as epicatechin-epiafzelechin dimer and epicatechin-epicatechin-epiafzelechin trimer respectively. EASPA (0.33 mg/day) and AQSPA (2.8 mg/day) dissolved in water were administered orally to female rats for 28 consecutive days. Vaginal cytology was performed daily during the study period to identify phases of the oestrous cycle. At the end of the study period oestrogen and progesterone levels were measured and compared with respective control groups (water). In addition, histological changes of endometrium at respective phase were also studied. There is no significant difference in the length of the oestrous cycle, serum estrogen level and endometrium histology between control and test group animals. However, there was a highly significant increase in progesterone levels of the EASPA administered group compared to the control ($P \le 0.001$), while no significant

difference of progesterone level was observed for AQSPA administered group. The antioxidant, anti-inflammatory and anticancer activity of EASPA and AOSPA were also determined. EASPA showed stronger radical scavenging activity against both DPPH (IC50 = 11.02 \pm 0.6 µg/mL) and superoxide radical (IC₅₀ = 26.11 \pm 0.72 µg/mL) than AQSPA with IC₅₀ values of 21.69 \pm 0.6 μ g/mL and 35.48 \pm 0.14 μ g/mL respectively. However, both fractions showed lower radical scavenging activity against DPPH (IC₅₀ = 4.3 ± 0.43) and superoxide radical (IC₅₀ = 22.56 ± 0.56) than that of respective positive controls. EASPA also showed strong anti-inflammatory activity (IC₅₀ = $10.31 \pm 1.11 \mu g/mL$) similar to ibuprofen (IC₅₀ = 11.2 \pm 1.90 µg/mL) by the oxidative burst assay. The antiinflammatory activity of AQSPA (IC₅₀ = $22.34 \pm 1.67 \ \mu g/mL$) was lower than that of both EASPA and ibuprofen. AQSPA (IC_{50} = 14.63 \pm 0.99 $\mu g/mL)$ exhibited higher cytotoxic activity towards Hela cells than EASPA (IC₅₀ = $18.78 \pm 0.90 \ \mu g/mL$), while both AQSPA and EASPA showed moderate cytotoxicity compared with doxorubicin (IC $_{50}$ = 0.35 \pm 0.01 $\mu g/mL).$ The cytotoxicity of both AQSPA (IC_{50} = 67.35 \pm 0.16 $\mu g/mL)$ and EASPA (IC_{50} = 44.21 \pm 0.73 µg/mL) against PC3 cells was lower compared to that of doxorubicin (IC₅₀ = $1.38 \pm 0.16 \ \mu g/mL$). The distribution of proanthocyanidins in the inflorescence and its change during the maturation of the inflorescence was also studied. Total proanthocyanidin yield in the inflorescence increases with the maturity. The percentage yield of crude EASPA decreases, whereas percentage yield of crude AQSPA increases, with increasing maturity. The variation of proanthocyanidin content of the inflorescence along the length of the inflorescence at different maturity stages and proanthocyanidin content of different floral parts of the inflorescence were determined by the acid butanol assay. There is a significant variation of proanthocyanidin content along the length of the inflorescence (p \leq

0.05). In all stages of development, the middle part contained the highest level of proanthocyanidins. The female flower (6.26 ± 1.26) has a higher proanthocyanidin content than the male flower (3.95 ± 0.48) and the rachilla (3.08 ± 1.79) has a higher proanthocyanidin content than the rachis (1.84 ± 0.12). Result of *in vivo* study suggests that the proanthocyanidins of the inflorescence of *Cocos nucifera* L. exerts its pharmacological effect through the mediation of progesterone, while its antioxidant and anti-inflammatory activities may be important in clinical situations involving menorrhagia. The results of the study on the distribution of proanthocyanidins in the inflorescence support the Ayurvedic practice of using the entire immature inflorescence.