COMPOSITION AND STABILIZATION OF SHARK LIVER OIL EXTRACTS OF SELECTED SHARK SPECIES

by

CHAMILA VINODANEE LIYANAGE

B. Sc. {University of Peradeniya, Sri Lanka} M. Sc. (Food Science & Technology) {University of Sri Jayawardanepura, Sri Lanka}

Thesis submitted to the University of Sri Jayawardanepura, Sri Lanka for the award of the Degree of Master of Philosophy in Chemistry on 11th November 1999.

DECLARATION

"The work described in this thesis was carried out by me under the supervision of Professor A. Bamunuarachchi (Department of Chemistry, University of Sri Jayawardanepura, Nugegoda, Sri Lanka) and Dr. W. M. K. Perera (Senior Research Officer, Institute of Post Harvest Technology, National Aquatic Resources Research and Development Agency, Colombo 15, Sri Lanka) and the report on this has not been submitted to any university for another degree".

Date: 1999-11-11

Chamila Vinodanee Liyanage

DECLARATION OF THE SUPERVISORS

"We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation"

Professor A. Bamunuarchchi Supervisor / Professor of Applied Chemistry Department of Chemistry University of Sri Jayawardanepura Nugegoda Sri Lanka.

Dr. W. M. K. Perera

Supervisor / Senior Research Officer Institute of Post Harvest Technology National Aquatic Resources Research & Development Agency (NARA) Crow Island, Colombo 15 Sri Lanka.

AND DURING STR

CONTENTS

D	3 T
Page	
1 age	UVII

I.	CONT	ENTS			i
II.	LIST (OF TAE	BLES		vii
III.	LIST (OF FIG	URES		viii
IV.	LIST (OF PLA	TES		xii
V.	ACKN	OWLE	DGMENTS		xiii
VI.	ABST	RACT			xv
1.	INTR	ODUC	ΓΙΟΝ		1
2.	LITE	RATUF	RE REVIEW		6
	2.1	Nutritiv	ve value of fish		6
		2.1.1	Fish oil		7
		2.1.2	Shark liver oil		9
	2.2	Fish p	roduction in Sri Lanka		11
		2.2.1	Shark production		11
	2.3	Comp	osition of fish oil		13
		2.3.1	Composition of shark liver oil		14
	2.4	Handli	ng and preservation of shark livers		15
	2.5	Extrac	tion of liver oil		18
	2.6	Lipid o	oxidation		21
		2.6.1	Mechanism of lipid oxidation		24
		2.6.2	Use of antioxidants		27
		2.6.3	Synthetic antioxidants		28
			2.6.3.1 Butylatedhydroxy anisole (BHA) and	*	
			butylatedhydroxy toluene (BHT)		29
			2.6.3.2 Tertiary butylehydro quinone (TBHQ)		30
			2.6.3.3 Gallate esters		31

i

	2.6.4	Natural	antioxidants	32
		2.6.4.1	Rosemary	35
		2.6.4.2	Soy bean	36
		2.6.4.3	Peanut	36
		2.6.4.4	Cotton seed	37
		2.6.4.5	Olive	37
		2.6.4.6	Mustard and Rape seed	38
		2.6.4.7	Corn	38
		2.6.4.8	Flaxseed	39
		2.6.4.9	Sesame	39
		2.6.4.10	Rice	40
		2.6.4.11	Turmeric	40
	2.6.5	Estimatic	on of antioxidant activity	41
EX	PERIMEN	TAL		43
3.1			proximate composition of shark liver	43
	3.1.1		nation of moisture	43
		3.1.1.1	Materials	43
		3.1.1.2	Method	43
	3.1.2		nation of ash	44
		3.1.2.1	Materials	44
		3.1.2.2	Method	44
	3.1.3		nation of oil content	45
		3.1.3.1	Materials	45
		3.1.3.2	Method	45
	3.1.4	Determin	nation of crude protein	46
		3.1.4.1	Materials	46
		3.1.4.2	Method	47
3.2	Evaluatio	on of liver	quality at the landing site, in ice (0°C) and	
	frozen (-	18°C) stor	age	49
	3.2.1	Evaluatio	on of quality of liver at the landing site	49
		3.2.1.1	Sensory evaluation of shark livers	49
			3.2.1.1.1 Materials	49

3

ii

		3.2.1.1.2	Method	49
1	3.2.1.2	Determinat	ion of pH	49
		3.2.1.2.1	Materials	49
		3.2.1.2.2	Method	50
	3.2.1.3	Determina	tion of total volatile nitrogen	50
		3.2.1.3.1	Materials	50
		3.2.1.3.2	Method	50
	3.2.1.4	Determina	tion of quality of liver oil	51
	3.2.1.5	Determina	tion of peroxide value of liver oil	52
		3.2.1.5.1	Materials	52
		3.2.1.5.2	Method	52
3	8.2.1.6	Determinat	ion of free fatty acid value of liver	
		oil		53
		3.2.1.6.1	Materials	53
		3.2.1.6.2	Method	53
3.2.2	Assessn	nent of quali	ty changes in shark livers in ice	
	storage	•		54
	3.2.2.1	Materials		54
	3.2.2.2	Method		54
3.2.3	Assessm	nent of quali	ity changes in shark livers in frozen	
	storage			55
	3.2.3.1	Materials		55
	3.2.3.2	Method		55
Deterr	nination	of fatty acid	composition	55
3.3.1	Materia	ıl		55
3.3.2	Method	L		56
Seasor	al variat	ion of oil co	ntent of shark livers	58
3.4.1	Materi	als		58
3.4.2	Metho	d		58
Extract	ion tech	niques and o	quality determination of liver oil	58
3.5.1	Wet ren	dering meth	od	58
	3.5.1.1	Materials		58
	3.5.1.2	Method		59

3.3

3.4

3.5

	3.5.2	Steam rendering method	59
		3.5.2.1 Materials	59
		3.5.2.2 Method	59
	3.5.3	Chloroform-methanol extraction method	60
		3.5.3.1 Materials	60
		3.5.3.2 Method	60
	3.5.4	Acid silage method	60
		3.5.4.1 Materials	60
		3.5.4.2 Method	61
	3.5.5	Alkali digestion method	61
		3.5.5.1 Materials	61
		3.5.5.2 Method	61
	3.5.6	Incubation method	62
		3.5.6.1 Materials	62
		3.5.6.2 Method	62
	3.5.7	Determination of quality of extracted liver oil	62
		3.5.7.1 Determination of anisidine value	63
		3.5.7.1.1 Materials	63
		3.5.7.1.2 Method	63
		3.5.7.2 Determination of total oxidation value	64
3.6	Asses	sment of suitable preservatives during oil extraction	64
	3.6.1	Preparation of fruit extract	64
		3.6.1.1 Materials	64
		3.6.1.2 Method	65
	3.6.2	2 Ensilage method	65
		3.6.2.1 Materials	65
		3.6.2.2 Method	65
	3.6.3	3 Steam rendering process	66
		3.6.3.1 Materials	66
		3.6.3.2 Method	66
3.7	Effec	ctiveness of antioxidants on liver oil oxidation	67
	371	Prenaration of plant extracts	67

iv

		3.7.1.1	Materials	67
		3.7.1.2	Method	67
	3.7.2	Prepara	tion of shark liver oil	68
		3.7.2.1	Materials	68
		3.7.2.2	Method	68
	3.7.3	Identific	cation of suitable oil preservative	68
		3.7.3.1	Materials	68
		3.7.3.2	Method	69
	3.7.4	Assessn	nent of optimum requirement of selected	
		preserva	atives	69
		3.7.4.1	Materials	69
		3.7.4.2	Method	70
	3.7.5	Determ	ination of iodine value	70
		3.7.5.1	Materials	70
		3.7.5.2	Method	71
	3.7.6	Determ	ination of 2-thiobarbaturic acid value	72
		3.7.6.1	Materials	72
		3.7.6.2	Method	72
3.8	Statisti	ical analy	sis	73
RES	SULTS A	ND DIS	CUSSION	74
4.1	Proxin	nate com	position of shark livers of different shark species	74
	4.1.1	Moistu	re content	74
	4.1.2	Ash cor	ntent	76
	4.1.3	Protein	content	76
	4.1.4	Lipid co	ontent	77
4.2	Evaluat	ion of liv	er and liver oil quality at the landing site and	
	during s	storage		82
	4.2.1	Evaluat	ion of liver quality at the landing site	82
	4.2.2	Quality	changes of shark livers during storage	90
		4.2.2.1	Evaluation of quality of liver and liver oil	
			during ice (0°C) storage	90

4

v

	4.2.2.2 Evaluation of liver and liver oil quality during	
	frozen (-18°C) storage	96
4.3	Fatty acid composition of selected shark species	102
4.4	Effect of seasonal variation on liver oil content of Silky	
	(Carcharhinus falciformis), Hammerhead (Sphyrna lewini) and	
	Oceanic white tip sharks (Carcharhinus longimanus)	111
4.5	Quality of shark liver oil extracted by different methods	117
4.6	Effect of preservatives on quality of liver oil during extraction	125
	4.6.1 Extraction of oil by ensilage method	125
	4.6.2 Extraction of oil by steam rendering method	130
4.7	Effectiveness of antioxidants on prevention of oxidation of liver oil	137
	4.7.1 Identification of suitable oil preservatives	137
	4.7.2 Optimum requirement of selected preservatives	143
	CLUSIONS	150
LITERATU	JRE CITED	154
PLATES		165
LIST OF R	ESEARCH PUBLICATIONS AND COMMUNICATIONS	
FROM TH	E STUDY	169

ale fait e a l'hérdre e le prime real angénératin a taile

table states in the same subscripts domain from

LIST OF TABLES

Table 4.1.1	Proximate composition of livers of different shark species	
	collected from West coast of Sri Lanka	75
Table 4.2.1	Organoleptic score card used for evaluation of shark livers	82
Table 4.2.2	Correlation coefficient of organoleptic score against total volatile	
	nitrogen value, pH value, free fatty acid % and peroxide value of	
	shark livers and liver oil	85
Table 4.2.2.1	Results of the bio-chemical variation of shark livers and oil	
	during ice storage	90
Table 4.2.2.2.	Results of the bio-chemical variation of shark livers and oil	
	during frozen storage	96
Table 4.3	Composition of major fatty acids in oil of different shark species	102
Table 4.5.1	Analysis of crude silky shark liver oil extracted from different	
	techniques	117
Table 4.7.1	Variation of free fatty acid value with storage time	137
Table 4.7.2	Variation of peroxide value with storage time	139
Table 4.7.3	Variation of para anisidine value with storage time	140
Table 4.7.4	Variation of iodine value with storage time	141

LIST OF FIGURES

Page No

Figure 2.1	The free radical chain mechanism of autoxidation	24
Figure 2.2	Formation of lipid peroxi radicals	25
Figure 2.3	A generalized scheme for autoxidation of lipids	27
Figure 2.4	Structure of BHA & BHT	30
Figure 2.5	Structure of TBHQ	31
Figure 2.6	Structure of PG	32
Figure 2.7	Structure of curcumin	40
Figure 2.8	Structure of demethoxy curcumin	40
Figure 2.9	Structure of bis-demethoxi curcumin	41
Figure 4.1.1	Liver oil contents of some common shark species in Sri	
	Lanka	77
Figure 4.2.1	Liver quality of silky (Carcharhinus falciformis) sharks at	
	Negambo and Beruwala landing sites	83
Figure 4.2.2	Variation of liver quality (freshness) of sharks with pH	
	value, total volatile content, free fatty acid % and peroxide	
	values	84
Figure 4.2.2.1	Variation of pH value of shark liver during ice (0°C) storage	91
Figure 4.2.2.2	Variation of total volatile nitrogen content of shark liver	
	during ice (0°C) storage	92

Figure 4.2	2.3 Variation of free	fatty acid value of shark liver during ice	
	(0°C) storage		93
Figure 4.2	2.4 Variation of pero	xide value of shark liver during ice (0°C)	
	storage		94
Figure 4.2	2.5 Variation of pH	value of shark liver during frozen (-18°C)	
	storage		97
Figure 4.2	2.6 Variation of total	volatile nitrogen of shark livers during	
	frozen (-18°C) s	torage	98
Figure 4.	2.7 Variation of free	fatty acid of shark liver during frozen	
	(-18°C) storage		99
Figure 4.	2.8 Variation of perc	oxide value of shark liver during frozen	
	(-18°C) storage		99
Figure 4.	.1 Saturated fatty a	cids contents of liver oil of three different	
	shark species		103
Figure 4.	.2 Percentages of n	nono unsaturated fatty acids of liver oil of	
	three different sl	nark species	105
Figure 4.	.3 Percentages of p	ooly unsaturated fatty acids of liver oil of	
	three different sl	nark species	106
Figure 4	.4 Percentages of r	a-3 poly unsaturated fatty acids of liver oil of	
	three different sl	hark species	107
Figure 4	.1 Seasonal variation	on of liver oil content of male and female	
	silky , hammerh	ead and oceanic white tip sharks	112
Figure 4	.1 Oil yields of diff	ferent extraction methods	117
Figure 4	.2 Free fatty acid v	values of oils from different extraction	
	methods		118
Figure 4	3 Peroxide values	of oils from different extraction methods	119

Figure 4.5.4	Thiobarbaturic acid values of oils from different extraction	120
	methods	
Figure 4.6.1.1	Yield of oil extracted by different treatments of silage	125
	method	
Figure 4.6.1.2	Free fatty acid % of oil extracted by different treatments of	
	silage method	126
Figure 4.6.1.3	Peroxide value of oil extracted by different treatments of	
	silage method	127
Figure 4.6.1.4	Para anisidine value of oil extracted by different treatments	
	of silage method	127
Figure 4.6.1.5	Total oxidation value of oil extracted by different treatments	
	of silage method	128
Figure 4.6.2.1	Yield of oil extracted by steam rendering method using	
	different treatments	130
Figure 4.6.2.2	Free fatty acid % of oil extracted by steam rendering	
	method using different treatments	131
Figure 4.6.2.3	Peroxide value of oil extracted by steam rendering method	
	using different treatments	132
Figure 4.6.2.4	Para anisidine value of oil extracted by steam rendering	
	method using different treatments	133
Figure 4.6.2.5	Total oxidation value of oil extracted by steam rendering	
	method using different treatments	134
Figure 4.7.1	The initial and final free fatty acid content of liver oil treated	
	with five different antioxidants	138
Figure 4.7.2	The initial and final peroxide value of liver oil treated with	
	five different antioxidants	139

Х

Figure 4.7.3	The initial and final para anisidine value of liver oil treated	
	with five different antioxidants	140
Figure 4.7.4	The initial and final iodine value of liver oil treated with	
	five different antioxidants	142
Figure 4.7.5	The effect of antioxidants; BHT, ascorbic acid, tamarind	
	fruit extract, tamarind seed extract and turmeric extract on	
	oxidation rancidity of shark liver oil	143
Figure 4.7.6	Oxidation of shark liver oil treated with ethanolic extracts of	
	turmeric & BHT during storage as measured by peroxide	
	value	144
Figure 4.7.7	Hydrolysis of shark liver oil treated with ethanolic extracts	
	of turmeric & BHT during storage as measured by free fatty	
	acid	145
Figure 4.7.8	Oxidation of shark liver oil treated with ethanolic extracts	
	of turmeric & BHT during storage as measured by thio	
	barbaturic acid value	146

xi

LIST OF PLATES

Page No

Plate - 01	Beruwala and Negombo fish landing sites in West coast of Sri	
	Lanka	163
Plate - 02	Selected shark species	164
Plate - 03	Natural antioxidants	166

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisors, Professor A. Bamunuarachchi and Dr. W. M. K. Perera for their valuable guidance extended and constructive criticism throughout my study and also critical reading of the manuscript.

I am very grateful to Dr. M. U. Jayasekara (former Director General, NARA), Dr. V. K. Graffham (former Head, IPHT, NARA) for their valuable guidance and making necessary arrangements to obtain financial support from the European Economic Community (EEC) under the project on Science and Technology for Development – Phase III (STD3) "Improved utilization of low value fish species", grant no TS3* CT93 - 0207 through Food and Agriculture Organization and NARA.

My special thanks to Professor P. W. Epasinghe (Chairman, NARA); Dr. D. S. Jayakody, (Director General, NARA); Dr. J. M. P. K. Jayasinghe (Head, IPHT, NARA), Professor T. S. G. Fonseka (former Head, IPHT, NARA) and Professor W. S. Fernando (Dean, Faculty of Applied Science, University of Sri Jayawardanepura) for their encouragement and co-operation given to me through out the study period.

My sincere thanks also given to Mr. R. Edirisinghe (Research Officer), Mr. S. Jayasooriya, Mrs. K. Hettiarachchci, Mrs. J. M. Chandrika, Mrs. R. Samaradivakara, Mr. C. Galappaththi,, Mr. G. Wijerathna, Miss. M. Paththapperuma, Mrs. U. K. Kusumalatha and Mr. K. Jayasena and other staff members of the IPHT, for their

assistance in collecting and analyzing the samples in an efficient manner and support extended to complete this study successfully.

I am deeply indebted to Mr. David James (Senior Fishery Industry Officer, FAO); Dr. Peter Ben Embarek (Co-ordinator, STD3 Project) and Professor H. H. Huss (Research Co-ordinator, EEC) for their co-operation extended to complete the program successfully and providing opportunities to participate at International Conferences held in Sri Lanka, Philippines and China.

I greatly appreciate the support of Mr. S. Amarasekara (Indo Pacific Tuna Programme), Mr. D Amarasooriya (Research Officer, NARA) and Mr. A. Gunarathne (Information Officer, NARA) to prepare this thesis in good manner.

I would also like to thank Mr. G. Jayasinghe and Mr. S. Mohottala (Scientific Officer, CISIR) for assistance provided me with their comments.

Finally my special thanks to my dearest Jagath and parents, without their blessing, support and constant encouragement, I would never have completed this study successfully and I get this opportunity to dedicate the thesis to my loving daughter Yomalka.

ABSTRACT

COMPOSITION AND STABILIZATION OF SHARK LIVER OIL EXTRACTS OF SELECTED SHARK SPECIES.

By

Chamila Vinodanee Liyanage

ABSTRACT

In the recent years, scientists have given more emphasis on the use and stability of fish lipid in the food industry as it consists of unsaturated fatty acids with distinct health and pharmaceutical value. This thesis presents the results of a series of experiments carried out on shark liver oil with regard to its composition, extraction methods, seasonal variations of oil content and stabilization using natural antioxidants.

Liver samples of fifteen shark species landed in the West coast of Sri Lanka were analyzed for proximate composition. Silky shark (*Carcharhinus falciformis*), Hammerhead shark (*Sphyrna lewini*) and Oceanic white tip shark (*Carcharhinus longimanus*) were selected for further studies as they have been identified as the predominant species with comparatively high liver oil content.

As the quality of raw livers has an affect on the oil quality, selection of fresh livers for oil extraction is very important. Organoleptic score card developed in the present study categorized 4.3% of the livers as best in quality while 30.4, 56.5 and 8.7 percentages as good, medium and poor in quality respectively at landing sites of Negombo and

Beruwala. Icing (0°C) and good handling practices on board would help to maintain the freshness of livers for more than 15 days.

Fatty acid composition of liver oil of three species were determined. Palmitic acid (C16:0; 22-26%) was dominant followed by oleic (C18:1; 13-23%) out of twenty fatty acids identified. Significantly (p<0.05) highest n-3 poly unsaturated fatty acids(PUFAs) recorded by silky shark (*Carcharhinus falciformis*) (27.4%) followed by hammerhead (*Sphyrna lewini*) (24.6%) and oceanic white tip (*Carcharhinus longimanus*) (20.2%) sharks. The contribution of eicosapentaenoic and docosapentaenoic acids for the total n-3 PUFAs by the three shark species was very high. Oceanic white tip (*Carcharhinus longimanus*) and silky shark (*Carcharhinus falciformis*) contributed highest value (94%) while hammerhead (*Spyrina lewini*) and silky shark (*Carcharhinus falciformis*) contributed (85%) and (77%) respectively. The ratio of n-3/n-6 was highest (6) in oceanic white tip shark (*Carcharhinus longimanus*) liver oil. The variation pattern of liver oil content of silky (*Carcharhinus falciformis*) and hammerhead (*Sphyrna lewini*) shark species showed more over similar and high values in December and law values in March - April. But, oceanic white tip shark (*Carcharhinus longimanus*) showed peak values in October. Results of this study revealed that liver oil content varies with the species, season and gender.

Influence of extraction methods ie., steam rendering, wet rendering, incubation, alkali digestion and acid silage on the quality and yield of shark liver oil was determined. Results suggested that extraction of oil using steam rendering and ensilage methods are suitable to be introduced as small - scale industry to coastal communities in Sri Lanka. Influence of natural antioxidants ie., tamarind (*Tamarindus indica*), garcinia (*Garcinia cambogia*) and bilin (*Averrhoa bilimbi*) and butylatedhydroxy toluene (BHT) on quality of liver oil extracted by ensilage and steam rendering methods was studied. The results showed the possibility of obtaining high quality liver oil using bilin (*Averrhoa*

bilimbi) juice during the extraction of oil by ensilage method and butylated hydroxy toluene (BHT) (200 ppm) in steam rendering extraction procedures.

Shark liver oil was treated with ethanolic extracts of turmeric (rhizome of *Curcuma domestica*), tamarind (fruit and seeds of *Tamarindus indica*) and synthetic antioxidants (BHT and ascorbic acid) to determine the effectiveness of treatments as antioxidants. Turmeric *(Curcuma domestica)* turned out to be the most effective. A level of less than 250 ppm of ethanolic extract of turmeric *(Curcuma domestica)* was sufficient to prevent oil oxidation and comparable to 200 ppm of BHT.