Determination of Condensed Tannin Content in Neem Bark.

by

Basnayake Mudiyansdage Mlanjulika Manike Kumudu

Kumari Basnayake

Thesis submitted to the University of ShiiJJayeovandenepura for the award of the Degree of Master of Polymer Science and Technology on 28th of July 2008. "The work described in this thesis was carried out by me under the supervision of Prof. Mahinda Wickramrathne and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma."

2 202

B.M.M.M.K.K.Basnayake

M.Sc/PS/0057

05/08/2008 lan

Dr Laloon Karunanayake BSc (Sir), Phil (Norm London) Senior Lecturer Department of Chemistry University of Sci Layewardenepura "I/We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation."

Date .04.-08-2008

Supervisor

Prof. Mahinda Wickramarathne

Acknowledgment

I wish to express my most sincere thanks and heartfelt gratitude to Supervisor Professor Mahinda Wickramarathne, The Dean, Faculty of Applied Sciences, and Sabaragamuwa University of Sri Lanka for his guidance and encouragement pretender to me in the preparation of the dissertation.

I also express my thanks and appreciation to Dr. Laeen Karunanyake, Course Coordinator, M.Sc. Programme in Polymer Sciences and Technology, University of Sri Jayewardenepura, for his encouragement and support given me through the period of my project.

My thanks are extended to the Laboratory staff of the Food Science & Technology, in the faculty of Applied Science at Sabaragamuwa University of Sri Lanka and I especially remember Mr. Bandula Sujith Rathnayake for helping me to carry on this work.

Many thanks to my father for courage, compassion and continual support for me in all my pursuits. Finally I thank to my husband who encourage me an always with me in spirit and keep me on track to carry on this project.

To my elder son Thanu always help me to computerize this report and little Gangul keeps me happy by being a good son.

Contents

Chapter I		Page
1.	Introduction	1
1.1	Tannin	1
1.2	Structural Chemistry of Condensed Tannin	2
1.3	Structural chemistry of Hydrolysable Tannin	11
1.3.1	Gallotannin	11
1.3.2	Elagatannin	15
1.4	Biological activities of Tannin	20
1.4.1	Tannins as Metal ion chelators	21
1.4.2	Tannin as antioxidants	22
1.5	Tannin Interaction with macromolecules	23
1.5.1	Carbohydrates	23
1.5.2	Proteins	24
1.5.3	Protein digestibility of Tannins	26
1.6	Extraction of phenolics from plants	28
1.6.1	Sample preparation	28
1.6.2	Methods for Tannin extraction	29
1.6.3	Sample purification and isolation	30
1.7	Chemical analysis of Tannin	30
1.7.1	Colorimetric Methods	30
1.7.1.1	Folin-Dennis method	30
1.7.1.2	Vanillin-HCl method	31
1.7.1.3	Butanol-HCl method	31

1.7.1.4	Rhodanine Method	32
1.7.1.5	Wilson and Hagerman method	32
1.7.2	Gravimetric Methods	33
1.7.2.1	Gravimetric method with Ytterbium (Reed et al., 1985)	33
1.7.2.2	Gravimetric method with PVP (Makkar et al., 1995)	33
1.7.2.3	Gravimetric method based on the detergent system	34
	(Horvarth et al., 1981)	
1.7.2.4	Hide Powder Method	34
1.7.2.5	Stiasny Test	34
1.7.3	Protein precipitation Methods	35
1.7.3.1	Radial diffusion assay (Hagerman, 1987)	35
1.7.4	Mixed assays	35
1.7.4.1	Method of Giner-Chavez, 1996	35
1.8	Chemical Modification of Tannins	37
1.8.1	Acetylation	37
1.8.2	Methylation	38
1.9	Occurrence of Tannin	38
1.10	Location of the tannins in various plant tissues	39
1.10.1	Bud Tissues	39
1.10.2	Leaf Tissues	39
1.10.3	Root Tissue	39
1.10.4	Seed Tissues	39
1.10.5	Stem Tissue	40
1.11	Neem Tree	40

ii

1.11.1	Description about Neem Tree	41
1.11.2	Distribution of Neem Tree	42
1.11.3	Propagation of Neem	42
1.11.4	Growth of Neem	43
1.11.5	Industrial Products of Neem	45
1.11.5.1	Neem Oli	45
1.11.5.2	Cosmetics	45
1.11.6	Fertilizers	45
1.11.7	Neem Cake	46
1.11.8	Neem Timber	46
1.11.9	Neem as a Fuel	47
1.11.10	Other Product of Neem	47
1.11.10.1	Resin	47
1.11.10.2	Bark	48
1.11.11	Tanning industry	50
1.12	Vegetable Tannin	52

Chapter II

Experimental	63
Materials	63
Tannin Extraction Procedures	63
Analysis of Condense Tannin Content	65
	Experimental Materials Tannin Extraction Procedures Analysis of Condense Tannin Content

Chapter III

3.	Results and Discussion	66
3.1	Calculation	70
Chapte	r IV	
4.	Conclusion	72
Further	Studies	72
Referen	ces	73

References

List of Tables

Table i.	Fresh Neem Bark + Distilled Water	66
Table ii.	Dried Neem Bark Powder + Distilled Water	67
Table iii.	Fresh Neem Bark + IM NaOH	67
Table iv.	Dried Neem Bark + 1 M NaOH	68
Table v.	Dried Neem Bark + Abs. Methanol	69
Table vi.	Dried Neem Bark + 70 % Aquous Acetone	69
Table vii.	Percentage of Condensed Tannin present in Neem Bark	70

List of Figures

Figure i.	Flavanoid Skeleton	02
Figure ii.	Flavan-3-ols	03
Figure iii.	Four common modes of coupling	04
Figure iv.	Soghum procyanidin epicatechin-((4B->8)-epicatechin)	05
	15-(4b->8)-catechin 4/5	
Figure v.	Oxidative clavege of Procynidin in hot alcohols	06
Figure vi.	Anthocynidins	06
Figure vii.	Branching of Condensed Tannin	07
Figure viii.	Acid Butanol Reactions	08
Figure ix.	Proanthocynidin A-2	08
Figure x.	Flavan-3,4-diols	09
Figure xi.	Flavan-4-ols	09
Figure xii.	Flavanoid Metabolisms	10
Figure xiii.	β-1,2,3,4,6-pentagalloyl-O-D-glucose	12
Figure xiv.	Chemical Structures of galloyl esters	13
Figure xv.	Chemical reactions of PGG	14
Figure xvi.	Aceitannin	15
Figure xvii.	Hamamellitannin	15
Figure xviii.	(A) Gallic Acid (B) HHDP (C) Ellagic Acid	16
Figure xix.	(A) Eugeniin (B) Casuarictin (C) HHDP	17
Figure xx.	β-D- glucose	17
Figure xxi	(A) corilagin (B) Geraniin (C)davidiin (D)dehydro-HHDP	18

Figure xxii.	Intermolecular oxidative coupling	19
Figure xxiii.	Euphorbin	19
Figure xxiv.	Onethein B	20
Figure xxv.	Common Names of Neem	44

Determination of Condensed Tannin Content

In Neem Bark

B.M.M.M.K.K. Basnayake

ABSTRACT

Tannin, a natural polymer belong to the polyphenolic group of compounds, is widely used in the leather industry. Specially as tanning agent for the conversion of putescible collagen fibers into leather matrix during the leather-manufacturing process.

In this project we measured the condensed tannin content in Neem bark to find out whether it is possible to use Neem Bark as a source of Tannin.

Tannin extracts of Neem Bark were obtained by reacting with Caustic Soda (NaOH), Distilled water, Methanol, and 70% aqueous Acetone.

A Stiasny Method determined the Condence Tannin contents of the extracts. By determining the Stiasny value it is expressed the content of Phenolic material able to react with an aldehyde.

72% of the tannin extract of the Neem Bark was reacted with the Formaldehyde. There for Neem Bark can use as a tanning agent in the small leather making process.

1. Introduction

1.1 Tannin

Plants accumulate a wide variety of "secondary" compounds, including alkaloids, terpenes and phenolics. Although these compounds apparently do not function in "primary" metabolism such as biosynthesis, biodegradation and other energy conversions of intermediary metabolism, they do have diverse biological activities ranging from toxicity to hormonal mimicry, and may play a role in protecting plants from herbivore and disease.

Phenolic metabolism in plants is complex, and yields a wide array of compounds ranging from the familiar flower pigments (anthocynidins) to the complex phenolics of the plant cell wall (lignin). However, the group of phenolic compounds known as tannins is clearly distinguished from other plant secondary phenolics in their chemical reactivities and biological activities.

Tradition use of tannins as against for converting animal hides to leather ("tanning") is one manifestation of the most obvious activity of the tannins: their ability to interact with and precipitate proteins, including the proteins found in animal skin. The term "tannin" comes from the ancient Celtic word for Oak, a typical source for tannins for leather making.

Bate-Smith defined tannins as "water soluble phenolic compound having molecular weights between 500 and 3000.... (Giving) the usual phenolic reactions... (and having) special properties such as the ability to precipitate alkoloids, gelatin and other proteins".

Haslam has more recently substituted the term "polyphenol" for "tannin", in an attempt to emphasize the multiplicity of phenolic groups1 characteristic of these compounds. He notes that molecular weights as high as 20,000 have been reported, and that tannin complex not only with proteins and alkoloids but also with certain polysaccharides. He prefers to use the term tannin, which emphasizes the character, which sets tannins apart from all other phenolics: the ability to precipitate proteins.

1.2 Structural Chemistry of Condensed Tannin

Proanthocynidins (condensed tannins) are polymeric flavanoids. The flevanoids are a diverse group of metabolites based on a heterocyclic ring system derived from phenylalanine (B) and polyketide biosynthesis (A). The flevanoid skeleton, the standard letters to identify the rings and the numbering system are shown here.

Fig. i Flavanoid Skeleton

The most widely studied condensed tannins are based on the flavan-3-ols (-)-epicatechin and (+)-catechin.

Addition of a third phenolic group on the B ring yields epigallocatechin and gallocatechin. Much less common are flavan-3-ols with only a single phenolic group on the B ring, para to C-2 (epiafzelechin, afezelechin with stereochemistry corresponding to epicatachin, catechin respectively).

The best characterized condensed tannins are linked via a carbon-carbon bond between C-8 of the terminal unit and C-4 of the extender. The four common modes of coupling are illustrated by the dimmers isolated by Haslam, and original named B-1, B-2, B-3, and B-4. The more complete names specify the position and stereochemistry of the interflavan bond completely. In addition to these dimmers, related dimmers linked by C-6 of the terminal unit and C-4 of the extender have been isolated.