# **Determination of Population Structure of Yellow Dwarf**

## **Coconut Population in Sri Lanka**



By

# Liyanage Chandima Jayamali Kamaral

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Botany on 25<sup>th</sup> of September, 2014 I certify that the candidate has incorporated all corrections, amendments and additions recommended by the examiners.

Aconferen \$ 15/2015

Dr. S.A.C.N.Perera Principle Geneticist and Plant Breeder, Genetics and Plant Breeding Division, Coconut Research Institute, Lunuwila, Sri Lanka.

alle 11/05/2015

Dr. P. N. Dassanayaka Senior Lecture, Department of Botany, University of Sri Jayawardanapura. "The work described in this thesis was carried out by me under the supervision of Dr. S.A.C.N. Perera and Dr. P.N. Dassanayaka and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma."

5/5/2015

L.C.J. Kamaral

"We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation"

(1100lie 11/05/2015

Dr. (Mrs) P. N. Dassanayaka (Internal supervisor)

Aconferen 5/5/2015

Dr. (Ms.) S. A. C. N. Perera (External supervisor)

#### **Table of Contents**

| Table of contents | i    |
|-------------------|------|
| List of Tables    | v    |
| List of Figures   | vi   |
| List of Plates    | vii  |
| Abbreviations     | viii |
| Acknowledgements  | Х    |
| Dedication        | xi   |
| Abstract          | xii  |

| Chapter 01: Introduction01 |                                        |    |  |
|----------------------------|----------------------------------------|----|--|
| 1.1                        | Coconut                                | 01 |  |
| 1.2                        | Coconut Genetic Resources in Sri Lanka | 02 |  |
| 1.3                        | Conserved Coconut Germplasm            | 03 |  |
| 1.4                        | Coconut Breeding in Sri Lanka          | 04 |  |
| 1.5                        | Improved Coconut Cultivars             | 04 |  |
| 1.5.1                      | CRIC65                                 | 05 |  |
| 1.6                        | Sri Lankan Yellow Dwarf Populations    | 05 |  |
| 1.7                        | Objectives                             | 07 |  |
| Chapte                     | Chapter 02: Review of Literature       |    |  |
| 2.1                        | Coconut Palm                           | 08 |  |
| 2.2                        | Botany of the Coconut Palm             | 09 |  |
| 2.2.1                      | The Fruit                              | 09 |  |

| 2.2.2                         | The Inflorescence                                 | 10 |  |
|-------------------------------|---------------------------------------------------|----|--|
| 2.2.3                         | The Root System                                   | 12 |  |
| 2.2.4                         | The Stem                                          | 13 |  |
| 2.2.5                         | The Leaf                                          | 14 |  |
| 2.3                           | Origin and Distribution of the Coconut            | 15 |  |
| 2.3.1                         | Origin                                            | 15 |  |
| 2.3.2                         | Distribution                                      | 16 |  |
| 2.4                           | Taxonomic Classification of Coconut               | 17 |  |
| 2.4.1                         | Taxonomy                                          | 17 |  |
| 2.4.2                         | Classification of Coconut in Sri Lanka            | 17 |  |
| 2.5                           | Coconut Breeding in Sri Lanka                     | 19 |  |
| 2.5.1                         | Objectives of Coconut Breeding                    | 22 |  |
| 2.5.2                         | Improved Coconut Cultivars in Sri Lanka           | 22 |  |
| 2.5.2.                        | 1 CRIC60                                          | 22 |  |
| 2.5.2.2 CRIC65                |                                                   |    |  |
| 2.5.2.3 CRISL98               |                                                   |    |  |
| 2.5.2.4                       | 4 CRISL2004 (Kapruwana)                           | 24 |  |
| 2.5.2.5 CRISL2012 (Kapsuwaya) |                                                   |    |  |
| 2.5.2.                        | 6 CRISL2013 (Kapsetha)                            | 24 |  |
| 2.6                           | Mass Production and Isolated Coconut Seed Gardens | 24 |  |
| 2.7                           | Collecting and Conservation of Coconut Germplasm  | 26 |  |
| 2.8                           | Morphological Characterization and Evaluation     | 27 |  |
| 2.9                           | Genetic Markers                                   | 27 |  |
| 2.9.1                         | Morphological Markers                             |    |  |

| 2.9.2   | Molecular markers                                  | 28 |
|---------|----------------------------------------------------|----|
| 2.9.2.  | Amplified Fragment Length Polymorphisms (AFLPs)    | 30 |
| 2.9.2.2 | 2 Random Amplified Polymorphic DNA (RAPDs)         | 31 |
| 2.9.2.3 | B Restriction Fragment Length Polymorphism (RFLPs) | 32 |
| 2.9.2.4 | 4 Single Nucleotide Polymorphisms (SNPs)           | 33 |
| 2.9.2.  | 5 Simple Sequence Repeats (SSRs)                   | 34 |
| 2.13    | Molecular Characterization of Coconut              | 36 |

| C | Chapter 03: Materials and Methods40 |                                                      |    |
|---|-------------------------------------|------------------------------------------------------|----|
|   | 3.1                                 | Site Selection and Sampling                          | 40 |
|   | 3.2                                 | Morphological Characterization                       | 41 |
|   | 3.2.1                               | Material                                             | 41 |
|   | 3.2.2                               | Descriptors for Morphological Characterization       | 42 |
|   | 3.2.3                               | Detection of Pollination Behaviour                   | 44 |
|   | 3.3                                 | Analysis of Morphological Data                       | 44 |
|   | 3.4                                 | Molecular Characterization                           | 45 |
|   | 3.4.1                               | Plant Material                                       | 45 |
|   | 3.4.2                               | DNA Extraction                                       | 46 |
|   | 3.4.3                               | Quantification of DNA                                | 48 |
|   | 3.4.4                               | SSR Assay                                            | 48 |
|   | 3.4.5                               | Polymerase Chain Reaction (PCR)                      | 51 |
|   | 3.4.6                               | Quantification of PCR Product                        | 51 |
|   | 3.4.7                               | Denaturing Polyacrylamide Gel Electrophoresis (PAGE) | 51 |
|   | 3.4.7.                              | 1 Preparation of Gel Electrophoresis Apparatus       | 51 |

| 3.4.7.2 Pre Run of the Gel53                                   | ; |
|----------------------------------------------------------------|---|
| 3.4.7.3 Sample Loading and Gel Electrophoresis53               | ; |
| 3.4.7.4 Staining of the Gel54                                  | ŀ |
| 3.4.7.5 Data Analysis54                                        | ŀ |
| Chapter 04: Results and Discussion                             | 5 |
| 4.1 Morphological Characterization                             | 5 |
| 4.1.1 Descriptive Statistics and Analysis of Variance (ANOVA)  | 5 |
| 4.1.2 Multivariate Data Analysis                               | ) |
| 4.1.2.1 Principal Component Analysis (PCA)                     | ) |
| 4.1.2.2 Cluster Analysis                                       | 3 |
| 4.1.3 Pollination Behaviour70                                  | ) |
| 4.2 Molecular Characterization                                 |   |
| 4.2.1 PowerMarker Analysis                                     |   |
| 4.2.1.1 Summary Statistics                                     |   |
| 4.2.1.2 Allele Frequencies                                     | 7 |
| 4.2.1.3 Phylogenetic Tree                                      | ) |
| 4.2.2 Population STRUCTURE analysis of SLYD coconut population | 2 |
| 4.2.2.1 Phenetic Tree                                          | 5 |
| 4.3 Combined Analysis of Morphology and Molecular Data         | 7 |
| 4.4 General Discussion                                         | ) |
| Chapter 05: Conclusion                                         | 5 |
| References                                                     | 7 |
| Appendix                                                       | 4 |

## List of Tables

| Table 2.1: Coconut Varieties and Forms in Sri Lanka                             |
|---------------------------------------------------------------------------------|
| Table 3.1: Descriptors used in morphological characterization                   |
| Table 3.2: Palms used for the molecular characterization and their crown based  |
| appearance46                                                                    |
| Table 3.3: Primer sequences, size of the PCR product and annealing temperatures |
| of the microsatellite markers used for genotyping of coconut palms49            |
| Table 4.1 Descriptive statistics of crown based and bole based groups           |
| Table 4.2: Eigen-analysis of the correlation matrix for crown based tall-like,  |
| dwarf-like and intermediate-like groups60                                       |
| Table 4.3: Distance matrix for crown based groups 62                            |
| Table 4.4: Correlation matrix based on phenotypic data 69                       |
| Table 4.5: Female and male phases of SLYD and SLGD palms at ISG70               |
| Table 4.6: Summary statistics of genotypic data of SLYD                         |
| Table 4.7: Allele frequencies within SLYD                                       |
| Table 4.8: Palm numbers corresponding to sample numbers given in STRUCTURE/     |
| DISTRUCT results                                                                |
| Table 4.9: Comparison of Morphological and Molecular data 88                    |

# List of Figures

| Figure 4.1: PCA scatter plot for crown based groups61                          |
|--------------------------------------------------------------------------------|
| Figure 4.2: Dendrogram for crown based groups based on Euclidean distances62   |
| Figure 4.3: Dendrogram for inflorescences morphology based on Euclidean        |
| distances64                                                                    |
| Figure 4.4: Dendrogram for fruit component data based on Euclidean distances65 |
| Figure 4.5: Dendrogram for yield characters based on Euclidean distances       |
| Figure 4.6: Dendrogram for stem and leaf morphology based on Euclidean         |
| distances67                                                                    |
| Figure 4.7: Graphical representation of the genotypes of each individual72     |
| Figure 4.8: UPGMA dendrogam showing clustering pattern between SLYD, SLT,      |
| SLGD and GT individuals                                                        |
| Figure 4.9: Estimated population structure of SLYD population                  |
|                                                                                |

# Abbreviations

| APS    | Ammonium persulfate                                       |
|--------|-----------------------------------------------------------|
| AFLPs  | Amplified Fragment Length Polymorphisms                   |
| ANOVA  | Analysis of Variance                                      |
| Вр     | Base pair                                                 |
| CGRD   | Coconut Genetic Resources Database                        |
| COGENT | Coconut Genetic Resources Network                         |
| CGIAR  | Consultative Group on International Agricultural Research |
| CRISL  | Coconut Research Institute of Sri Lanka                   |
| DNA    | Deoxyribonucleic Acid                                     |
| DW     | Dry Weight                                                |
| DL     | dwarf-like                                                |
| EDTA   | Ethylenediaminetetraacetic acid                           |
| EC     | Equatorial Circumference                                  |
| FNW    | Fresh Nut Weight                                          |
| G20    | Girth at 20 cm Height                                     |
| G150   | Girth at 150 cm Height                                    |
| GT     | Gon Thembili                                              |
| HW     | Husk Weight                                               |
| HNW    | Husked Nut Weight                                         |
| IL     | intermediate-like                                         |
| IPGRI  | International Plant Genetic Resources Institute           |
| ISSR   | Inter Simple Sequence Repeat                              |
| ISG    | Isolated Coconut Seed Garden                              |
| KW     | Kernel Weight                                             |
| LL     | Leaflet Length                                            |
| LW     | Leaflet Width                                             |
| WW     | Liquid Endosperm Weight                                   |
| μl     | Micro Litre                                               |
| NFF    | Number of Female Flowers                                  |
| Y02-NI | Number of Inflorescences                                  |
|        |                                                           |

| NL     | Number of Leaflets                       |
|--------|------------------------------------------|
| NC     | Nut Count                                |
| Y02-FF | Annual Female Flower Production          |
| PD     | Peduncle Diameter                        |
| PL     | Peduncle Length                          |
| PtL    | Petiole Length                           |
| PT     | Petiole Thickness                        |
| PW     | Petiole Width                            |
| PAGE   | Polyacrylamide Gel Electrophoresis       |
| PC     | Polar Circumference                      |
| PCR    | Polymerase Chain Reaction                |
| PIC    | Polymorphic Information Content          |
| PCA    | Principal Component Analysis             |
| RL     | Rachis Length                            |
| RAPDs  | Random Amplified Polymorphic DNA         |
| RFLPs  | Restriction Fragment Length Polymorphism |
| Y02-SF | Settings Flowers                         |
| SW     | Shell Weight                             |
| SSRs   | Simple Sequence Repeats                  |
| SNPs   | Single Nucleotide Polymorphisms          |
| SNW    | Split Husked Nut Weight                  |
| SWFF   | Spikeletes with Female Flowers           |
| SWWFF  | Spikeletes without Female Flowers        |
| SG     | Stalk Girth                              |
| SH     | Stem Height                              |
| SLGD   | Sri Lanka Green Dwarf                    |
| SLT    | Sri Lanka Tall                           |
| SD     | Stranded Deviation                       |
| TL     | tall-like                                |

ix

#### Acknowledgements

I would like to express my deepest gratitude to my supervisor Dr. (Ms) S.A.C.N. Perera, Principal Research Officer of the Genetics & Plant Breeding Division of the Coconut Research Institute of Sri Lanka, for her invaluable guidance, immeasurable support and cooperation provided to make this project success. I am also greatly indebted to my supervisor, Dr (Mrs.) Nilanthie Dassanayaka, Senior Lecturer of the University of Sri Jayawardenepura for valuable guidance, immense support and important advices kindly provided throughout this project.

I would like to express my sincere gratitude to Mr. Nandika Perera, Senior Scientist, Parentage Analysis Division, Genetech Molecular Diagnostics, Colombo 08, for his encouragement, guidance and support throughout the project which helped me immensely to complete the project successfully.

I am grateful to Dr. J.M.D.T. Everard, the former Deputy Director (Research) of the Coconut Research Institute of Sri Lanka for his valuable guidance, immense support and important advices kindly provided throughout this project.

I gratefully acknowledge Dr. Lalith Perera, Head of the Genetics and Plant Breeding Division of CRI and Mr. Dhammika N. Gunesekera, Owner, Genetech Molecular Diagnostics, Colombo 08, for granting permission to carry out this study as my M. Phil research at the Coconut Research Institute and Genetech respectively.

I would like to express my sincere gratitude to Mrs. Sandya Fernando, Experimental Officer, Mr. Gamini Jayawardana, CRI and all the pollination workers at Ambakelle.

A special word of thanks goes to all the staff members at Parentage Analysis Division, Genetech, Colombo 08, for their valuable support throughout the project.

I would like to acknowledge the financial assistance of the National Research Council, Sri Lanka under grant number 11-042.

Finally, I express my heartfelt gratitude to my parents and brother for their immeasurable love and care bestowed to me throughout my life.

This thesis is dedicated to my loving parents

groups based on the presence or absence of an apparent root bole. Furthermore, the selected palms were divided into three groups based on the appearance of crown: talllike (TL) group, dwarf-like (DL) group and intermediate-like (IL) group. Analysis of variance and multivariate data analytical methods were performed in SAS and MINITAB software for the analysis of morphology data. Out of these palms, 51 palms were selected randomly for the molecular characterization and a total of 30 microsatellite primer pairs were used for genotyping. Genotypic data were analysed by PowerMarker and STRUCTURE software to determine the genetic diversity and the population structure of Yellow dwarf coconuts.

Individual palm data, when subjected to multivariate discrimination did not reveal clear groupings within the sample population resulting in many overlapping groups. However, when the data of different morphology based groups were analysed the results indicated a separate TL group within this population and it was distant from DL and IL groups. DL and TL groups clearly separated out with different morphological features defining them. However even with this analysis intermediate group could not be defined with clear morphological features.

In PowerMarker dendrogram two major clusters and three sub cluster in one major cluster, resulting four clusters were obseverd. In STRUCTURE analysis four sub populations (K = 4) were identified with the highest probability values concluding four groups within SLYD population.

The population structure of Yellow dwarf coconut form was clearly revealed by the molecular data. Considering both morphological and molecular analysis, the SLYD population was categorized into pure SLYD, Yellow semi tall (new coconut form) and a further mixed two groups.

The semi tall coconut form should be included in the coconut classification in Sri Lanka and should be conserved in *ex-situ* field gene banks of coconut to be utilized in the coconut breeding programmes. Pure SLYD should be used as the female parent in the improved and recommended coconut hybrid CRIC65 (Yellow) to extract the maximum hybrid vigour. This needs to be carefully considered in planting parent populations at the development and upgrading of coconut seed gardens for mass production of the hybrids including SLYD as a parent. groups based on the presence or absence of an apparent root bole. Furthermore, the selected palms were divided into three groups based on the appearance of crown: tall-like (TL) group, dwarf-like (DL) group and intermediate-like (IL) group. Analysis of variance and multivariate data analytical methods were performed in SAS and MINITAB software for the analysis of morphology data. Out of these palms, 51 palms were selected randomly for the molecular characterization and a total of 30 microsatellite primer pairs were used for genotyping. Genotypic data were analysed by PowerMarker and STRUCTURE software to determine the genetic diversity and the population structure of Yellow dwarf coconuts.

Individual palm data, when subjected to multivariate discrimination did not reveal clear groupings within the sample population resulting in many overlapping groups. However, when the data of different morphology based groups were analysed the results indicated a separate TL group within this population and it was distant from DL and IL groups. DL and TL groups clearly separated out with different morphological features defining them. However even with this analysis intermediate group could not be defined with clear morphological features.

In PowerMarker dendrogram two major clusters and three sub cluster in one major cluster, resulting four clusters were obseverd. In STRUCTURE analysis four sub populations (K = 4) were identified with the highest probability values concluding four groups within SLYD population.

The population structure of Yellow dwarf coconut form was clearly revealed by the molecular data. Considering both morphological and molecular analysis, the SLYD population was categorized into pure SLYD, Yellow semi tall (new coconut form) and a further mixed two groups.

The semi tall coconut form should be included in the coconut classification in Sri Lanka and should be conserved in *ex-situ* field gene banks of coconut to be utilized in the coconut breeding programmes. Pure SLYD should be used as the female parent in the improved and recommended coconut hybrid CRIC65 (Yellow) to extract the maximum hybrid vigour. This needs to be carefully considered in planting parent populations at the development and upgrading of coconut seed gardens for mass production of the hybrids including SLYD as a parent.