Development of a low calorie beverage with *Phyllanthus emblica* (Linn.)

By Appuwadu Mesthrige Champika Udayani Silva

Thesis submitted to the University of Sri Jayewardenepura as the partial fulfillment for the award of the degree of Masters of Food Science and Technology on 2008.

Declaration

The work described in this thesis was carried out by me under the supervision of Dr. (Ms.) I.G.N. Hewajulige, Dr. K.K.D.S. Ranaweera and Mr. J. Wansapala and a report on this thesis has not been submitted in whole or in part to any University or any other institution for another degree.

Bindike A.M.C.U. Silva

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Dr. (Ms.) I.G.N. Hewajulige Senior Research Officer, Food Technology Section, Industrial Technology Institute 363, Bauddhaloka Mawatha, Colombo 07 Sri Lanka.

Mr. J. Wansapala

gNHew g -

15.03.2009

Dr. K.K.D.S. Ranaweera Head/Senior lecturer Department of Food Science & Technology University of Sri Jayewardenepura Sri Lanka.

m.A. Junt Den me

Affectionately dedicated

To

My husband Isuru

And

My parents

Table of contents

Table of contents	i
Table of figures	viii
List of tables	x
List of plates	xi
List of abbreviations	xii
Acknowledegement	xiii
Abstract	xv
CHAPTER 1 INTRODUCTION	1
CHAPTER 2 LITERATURE REVIEW	5
2.2 Chemical composition	5
2.2.1 Carbohydrates	6
2.2.2 Acids	6
2.2.3 Proteins	6
2.2.4 Vitamins	7
2.2.5 Tannins	7
2.3 Cultivars of amla	8
2.4 Medicinal properties of amla	9
2.4.1 Antioxidant properties	9
2.4.2 Antimicrobial properties	9
2.4.3 Other pharmacological properties	9
2.5 Changes of fruit during maturity	10
2.6 Changes of fruit during storage	10
2.7 Processed products of amla	11
2.7.1 Amla beverages	11
2.7.1.1. Ready-to Serve drinks	11
2.7.1.2 Squash	11
2.7.2 Amla preserve	12
2.7.3 Amla pickle	13
2.7.4 Dehydrated amla	13
2.8 Treatments applied to reduce astringency during processing	14
2.8.1 Physical methods	14

2.8.1.1 Blanching/heat treatments	14
2.8.1.2 Centrifugation	15.
2.8.1.3 Pre-filtration	15
2.8.2 Chemical methods	15
2.8.2.1 Gelatin as a fining agent	15
2.9 Changes of amla during processing	16
2.10 Changes of processed products during storage	17
2.10.1 Amla juice	17
2.10.2 Amla beverages	18
2.11 Pectin	19
2.11.1 Physico-chemical properties of pectin	19
2.11.2 Changes of pectin during processing and storage	20
2.12 Sucralose	21
2.12.1 Structure and chemical properties of Sucralose	21
2.12.2 Advantages of usage of Sucralose	21
CHAPTER 3 - MATERIALS AND METHODS	23
3.1 Chemicals, ingredients and equipment	23
3.1.1. Ingredients for processing	23
3.1.2 Chemicals for determination of ascorbic acid	23
3.1.3 Chemicals for determination of tannin content	23
3.1.4 Chemicals for determination of antioxidant activity	23
3.1.5 Chemicals for determination of aerobic plate count	24
3.1.6 Chemicals for determination of yeasts and mold	24
3.1.7 Chemicals for determination of coliforms	24
3.1.8 Chemicals for determination of titratable acidity	24
3.1.9 Chemicals for determination of free SO ₂ content in amla juice	24
3.1.10 Equipment	24
3.2 Raw materials	24
3.3 Preliminary study of development of the low calorie beverage	25
3.3.1 Formulation of the initial beverage	25
3.3.2 Selection of a method for modification of taste	25
3.3.3 Confirmation of the need of gelatin treatment	26

•

ii

3.3.4 Selection of the best method to reduce astringency of amla juice	26
3.3.5 Adjustment of the level of gelatin treatment-I	27
3.3.6: Adjustment of the level of gelatin treatment-II	28
3.3.7: Determination of the time of gelatin treatment	28
3.3.8: Determination of the level of pectin	28
3.3.9: Determination of the level of sweetener- I	28
3.3.10: Determination of the level of sweetener- II	28
3.4. Development of the low calorie beverage: Detailed study	29
3.4.1 Formation of the initial beverage	29
3.4.1.1 Determination of tannin content by volumetric method	29
3.4.1.2 Analysis of antioxidant activity by DPPH free radical scavenging assay	30
3.4.2 Determination of the best method for reducing astringency	31
3.4.3 Optimization of the level of gelatin treatment	32
3.4.3.1: Trial 1	32
3.4.3.2: Trial 2	33
3.4.4 Determination of the level of juice and thickener	33
3.4.4.1: Trial 1	33
3.4.4.2: Trial 2	34
3.4.5 Determination of the level of sweetener	34
3.4.5.1: Trial 1	34
3.4.5.2: Trial 2	35
3.5 Determination of shelf life of the low calorie beverage	35
3.5.1 Preparation of samples	35
3.5.2 Storage plan	35
3.5.3 Analysis of samples	35
3.5.4 Evaluation of microbiological quality	35
3.5.4.1 Preparation of samples	36
3.5.4.2 Determination of Aerobic plate count by pour plate method	36
3.5.4.3 Enumeration of yeast and mold.	36
3.5.4.4 Detection of coliforms	36
3.5.5 Sensory evaluation	36
3.5.6 Physico-chemical analysis	37

.

3.5.7 Calculation of shelf life	37
3.6 Development of a method to preserve amla pulp	38
3.6.1 Preparation of samples	38
3.6.2 Storage plan	38
3.6.3 Analysis of samples	38
3.6.4 Evaluation of microbiological quality	38
3.6.5 Sensory evaluation	39
3.6.6 Physico-chemical analysis	39
3.6.6.1 Determination of titratable acidity of fruit juices	39
3.6.6.2 Determination of free SO ₂ content in amla juice	39
CHAPTER 4 RESULTS AND DISCUSSION	41
4.1 Preliminary study of development of the low calorie beverage	41
4.1.1: Formulation of the initial beverage	41
4.1.2: Selection of a method for modification of the taste	41
4.1.3: Confirmation of the need of gelatin treatment	42
4.1.4: Selection of the best method to reduce astringency of amla juice	42
4.1.5: Adjustment of the level of gelatin treatment-I	44
4.1.6: Adjustment of the level of gelatin treatment-II	45
4.2 Development of the low calorie beverage: Detailed study	48
4.2.5 Determination of the level of sweetener	60
4.2.5.1: Trial 1	60
4.2.5.2: Trial 2	60
4.2.6 Process flow diagram for low sugar amla concentrated drink	62
4.3 Determination of shelf life of the low calorie beverage	63
4.3.1 Microbiological quality	63
4.3.2 Sensory evaluation	63
4.3.3 Physico-chemical properties	67
4.3.3.1 SO ₂ content	67
4.3.3.2 Vitamin C content	67
4.3.3.3 Tannin content and antioxidant activity	68
4.3.3.4 Colour	69
4.3.3.5 pH acidity and TSS content	70

4.3.4.1 Reduction of the quality of taste at different temperatures of storage	72
4.3.4.2 Reduction of the quality of colour at different temperatures of storage	72
4.3.4.3 Reduction of the vitamin C content at different temperatures of storage	73
4.4 Study of a method to preserve amla pulp	76
4.4.1 Evaluation of microbiological quality	76
4.4.2 Physico-chemical analysis	79
4.4.3 Change of the sensory and chemical quality of the treatments during storage	83
4.4.3.1 Sample stored under ambient conditions without a treatment	83
4.4.3.2 Sample refrigerated without a treatment	84
4.4.3.3 Sample stored under ambient conditions after heating to 85 $^{\circ}$ C	84
4.4.3.4 Sample refrigerated after heating to 85 °C	85
4.4.3.5 Sample stored under ambient conditions after addition of 2000 ppm SO_2	85
4.4.3.6 Sample refrigerated after addition of 2000 ppm SO ₂	87
4.4.3.7 Sample stored under ambient conditions after heating to 85 $^\circ C$ and addition	of
2000 ppm SO ₂	87
4.4.3.8 Sample refrigerated after heating to 85 $^{\circ}$ C and addition of 2000 ppm SO ₂	88
4.4.4 State of samples after 12 weeks of storage (duration targeted)	90
4.4.5 State of samples after 15 weeks of storage	90
4.4.6 State of samples after 18 weeks of storage	91
CHAPTER 5 CONCLUSIONS	93
CHAPTER 6 SUGGESTIONS	94
CHAPTER 7 REFERENCES	95
Appendix I	101
Appendix II	102

v

Table of Figures

Figure 2.1 Chemical structure of sucralose	21
Figure 4.1 Mean sensory scores of heat treatments for reducing astringency	43
Figure 4.2 Selection of the best level of gelatin treatment I	45
Figure 4.3 Selection of the best time for gelatin treatment II	46
Figure 4.4 Selection of the best level of sweetener-I	47
Figure 4.5 Selection of the best sweetness-II	48
Figure 4.6 Mean scores for different pretreatments for reduction of astringency	50
Figure 4.7 Overall acceptability of gelatin treatments I	52
Figure 4.8 Taste of gelatin treatments I	52
Figure 4.9 Astringency of gelatin treatments I	52
Figure 4.10 Overall acceptability of gelatin treatments- II	54
Figure 4.11 Taste of gelatin treatments- II	54
Figure 4.12 Astringency of gelatin treatments- II	54
Figure 4.13 Mean scores for different juice contents	57
Figure 4.14 Overall acceptability of samples with different juice contents	58
Figure 4.15 taste of samples with different juice contents	59
Figure 4.16 mouthfeel of samples with different juice contents	59
Figure 4.17 Scores for different levels of sucralose I	60
Figure 4.18 Scores for different levels of sucralose -II	61
Figure 4.19 Flow diagram for processing the amla beverage	62
Figure 4.20 Sensory scores for drinks after 6 weeks storage	65
Figure 4.21 Sulphur dioxide contents of amla beverages during shelf life study	67
Figure 4.22 Vitamin C content of amla beverages during the shelf life study	67
Figure 4.23 Tannin content of amla beverages during shelf life study	68
Figure 4.24 Antioxidant activities of amla beverages during shelf life study	69
Figure 4.25 Colour of amla beverages during shelf life study	69
Figure 4.26 pH of amla beverages during shelf life study	70
Figure 4.27 Acidity of amla beverages during shelf life study	71
Figure 4.28 TSS of amla beverages during shelf life study	71
Figure 4.29 Change of taste of the beverages stored at four different temperatures	72
Figure 4.30 Change of colour of the beverages stored at four different temperatures	73

Figure 4.31 Change of vitamin C of the beverages stored at four different temperatures

	74
Figure 4.32 Arrhenious plot of quality parameters of low calorie amla beverage	74
Figure 4.34 Variation of pH during storage of preserved amla juice	79
Figure 4.35 Variation of TSS during storage of preserved amla juice	80
Figure 4.36 Variation of ascorbic acid during storage of preserved amla juice	80
Figure 4.37 Variation of tannin during storage of preserved amla juice	81
Figure 4.38 Variation of SO ₂ during storage of preserved amla juice	81
Figure 4.39 Variation of anti-oxidant during storage of preserved amla juice	82
Figure 4.40 Variation of colour during storage of preserved amla juice	82
Figure 4.41 Variation of acidity during storage of preserved amla juice	83

List of tables

Table 2.1 Composition in 100 g ripe flesh of nelli	5
Table 2.2 Physical characteristics of different cultivars of amla	8
Table 2.3 Chemical characteristics of different cultivars of amla	8
Table 3.1 Volumes of constituents of assay	31
Table 3.2 Pretreatments to reduce astringency	31
Table 3.3 Gelatin treatment combinations	33
Table 3.4 Contents of juice and pectin in selection of the best application	34
Table 3.5 Treatments applied in preservation of juice	38
Table 4.1 Physico-chemical parameters of juice subjected to pretreatments	43
Table 4.2 Changes in dilution of different gelatin treated samples	44
Table 4.3 Chemical parameters	49
Table 4.4 Physico-chemical parameters of different pretreatments	50
Table 4.5 Physico- chemical parameters of gelatin treatments – I	53
Table 4.6 Physico- chemical parameters -II	56
Table 4.7 Physico-chemical parameters of different juice contents I	57
Table 4.8 Physico-chemical parameters of different juice contents II	59
Table 4.9 Results of microbiological quality of stored beverages	63
Table 4.10 Microbiological counts of juice samples	78

List of plates

Plate 4.1 amla beverage at the beginning of storage at four temperatures	65
Plate 4.2 amla beverage after 6 weeks of storage at four temperatures Plate 4.3 amla juice at the beginning of storage Plate 4.4 amla juice after 15 weeks of storage	66 89 89

List of abbreviations

LM- Low methoxy

HM- High methoxy

DE- Degree of esterification

SMS- Sodium metabisulphite

KMS- Potassium metabisulphite

TSS- Total soluble solids

NERD- National Engineering Research & Development

DPPH- 2,2-diphenyl-1-picrylhydrazyl

ppm- parts per million

ANOVA- Analysis of variance

SAS- Statistical analysis system

1

Acknowledgement

First and foremost I wish to express my sincere appreciation to Dr. (Ms.) Shanthi Wilson Wijeratnam, Head, Food Technology Section, Industrial Technology Institute for permitting me to carry out the research project in the ITI.

Dr. (Ms.) Ilmi G.N. Hewajulige, Senior Research Officer, Food Technology Section, Industrial Technology Institute, is highly appreciated for her guidance, encouragement and sharing her valuable practical experience with me as an external supervisor to carry out the project successfully.

A special appreciation is extended to my internal supervisors Dr. K.K.D.S. Ranaweera Mr. J. Wansapala for their valuable guidance to make the project fruitful.

My heartfelt gratitude is bestowed upon Ms. Malini Mallawaratchie, ex. Senior Research Officer, Food Technology Section, Industrial Technology Institute, Colombo 07, who guided me throughout the foundation of this study and designed the experiments.

I sincerely thank the panel of teachers of University of Sri Jayewardenepura, for their guidance throughout the coursework and the research, and the staff of Food Technology section, Industrial Technology Institute for their kind corporation.

Special thanks are there for Ms. Erandi Jayasekera for helping me with the microbiological analysis, Mr. D. Amarasinghe for his assistance in the processing laboratory and the members of the sensory panel.

I would like to thank Mr. Rexie Fernando, Ashirwaad Herbals, Ja Ela, for the research concept, provision of amla juice for the preliminary study and co-ordination with the consumer panel.

Finally I express the deepest sense of gratitude to my family and friends for encouraging me to carry out the work continuously throughout the period even under difficult conditions.

Development of a low calorie beverage with amla (*Phyllanthus emblica* Linn.)

By A.M.C.U. Silva

ABSTRACT

Phyllanthus emblica (Linn.), known as amla, Indian gooseberry or nelli, is a hardy tropical crop with many proven medicinal properties. As amla is underutilized in Sri Lanka and due to lack of low calorie functional foods available in the market, a squash type low calorie beverage was formulated and the shelf life was determined. A study was conducted to develop a method to preserve amla juice for minimum three months.

The product development was carried out in two stages. The preliminary study involved in development of a method to reduce high astringency of juice, optimization of level of bulking agent and level of sweetener based on sensory evaluation by a trained and screened sensory panel and a panel of consumers who do not consume sugar. After several trials, treatment with gelatin was found to be the best to reduce the astringency and treatment with 0.025% gelatin for 5 hours at 10 °C \pm 2 was identified as the suitable condition. The optimal content of bulking agent was 0.1% and the level of sucralose was 150 ppm, as calculated in the diluted drink. The dilution factor was 1:3.5 and it was accepted by the consumer panel.

The second stage was conducted based on the results of the preliminary study with relevant chemical analysis. Application of gelatin was found to be the best treatment to reduce astringency and parameters were adjusted to 0.045 % for one hour at 10 °C \pm 2. The bulking agent was 0.2 % and sweetener was 175 ppm as in the diluted drink. the content of amla juice was 40 %.

The shelf life was determined with samples stored at 10 °C \pm 2, 30 °C \pm 2, 37 °C \pm 2 and 42 °C \pm 2. The microbiological, sensory and chemical properties were analyzed at two weeks interval for six weeks storage. Shelf life is 134 days at 28 °C storage. The ascorbic acid content, Anti-oxidant activity and colour reduced significantly (p<0.05) throughout the storage period, while pH, TSS and acidity were observed to be unchanged. Storage at 25 °C \pm 2, 30 °C \pm 2, and 10 °C \pm 2 will have shelf lives of 160 days, 119 days and 414 days respectively.

Amla juice was extracted and subjected to eight different treatments. They were stored at 28 °C and 10 °C with or without heating to 85 °C and with or without addition of 2000 ppm SO₂. Samples stored without any treatment were unacceptable in quality within six weeks. Heated juices could be kept without spoilage up to the end of the study however, were omitted later due to off taste caused by non enzymatic browning. The samples preserved with SO₂ remained of significantly high sensory and chemical qualities. Heating juice has inactivated polyphenol oxidases, SMS has prevented ascorbic acid oxidation and refrigeration has lowered rate of chemical deteriorative processes of the amla juice. Treatment of juice with 2000 ppm SO₂ and refrigeration was the best method found to preserve amla juice for minimum of three months.