DEVELOPMENT OF CARBON BLACK FILLED

NR/SBR/BR COMPOSITES SUITABLE FOR

TYRE TREADS

BY

A.D.J.D. DHARMADASA

M.Sc.

2007

DEVELOPMENT OF CARBON BLACK FILLED

NR/SBR/BR COMPOSITES SUITABLE FOR

TYRE TREADS

This thesis was submitted in partial fulfillment of the requirements for the Master of Science in Polymer Science and Technology to the Faculty of Graduate Studies of the University of Sri Jayewardenepura, Sri Lanka.

Declaration

The work described in this thesis was carried out by me under the supervision of Mrs. Dilhara G. Edirisinghe and a report on this has not been submitted to any University for another degree. Also, I certify that this thesis dose not include, without acknowledgement, any material previously submitted for a degree in any University and to best of my knowledge and belief it dose not contain any material previously published, written or oral communicated by another person except where due reference is made in the text.

A.D.J.D. DHARMADASA

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Mrs. Dilhara G. Edirisinghe Supervisor Rubber Research Institute of Sri Lanka Rathmalana. (RRISL)

.....

Dr. Laleen Karunanayake Course Coordinator Department of Chemistry University of Sri Jayawardenepura

ACKNOWLEDGEMENT

I owe my sincere appreciation and deepest gratitude to my supervisor Mrs. Dilhara G Edirisinghe, Acting Head of the Rubber Technology and Development Department of the Rubber Research Institute of Sri Lanka, (RRISL) Ratmalana for her invaluable guidance, assistance and encouragement throughout my research project.

I extend my gratitude to Dr. Laleen Karunanayake, the Coordinator of the M.Sc. Degree Program in Polymer Science and Techonolody, for the great encouragement given to me. Also, special thanks devoted to Dr. Nanda Fernando, Technical Director of the Loadstar Company for sharing his vast experiences with me and providing technical advice in carrying out my research project to success. Further, I wish to express my heartiest thanks to Mrs. Dilini Seneviratne for her great support during my research hours.

I take this opportunity to thank all the staff at the RRISL for their great support during my research hours, especially to the staff of Rubber Technology and Development Department where my research work was carried out and to those of the other three departments of RRISL, Ratmalana for providing equipment and materials for my research work. Furthermore, I wish to express my particular thanks to the University of Moratuwa and Associated Motorways Ltd. for providing facilities to obtain rheographs by using Rheometer in order to carry out a study on rubber composites which would not be possible, if not for their support. I would like to present curtsey to Mr. D.M.D.S. Dissanayake who helped me in critical moments in various ways. Also, special thanks offered to my friend Mr. Susantha Vigitha Weera who gave me his computer to produce a thesis to the level best.

Further, I would like to convey my heartiest gratitude to my loving parents; for helping me in every respect. Furthermore, I like to convey my gratitude to my sister, brother and colleagues for giving me greater courage and help during my research period. Finally, a big thank for every one who encouraged me for this task and wished me every success.

ABSTRACT

The specific objectives of the research was to develop a tyre tread compound, a composite with NR, SBR and BR having physical properties mainly abrasion resistance, tensile strength, tear strength, hardness and rebound resilience acceptably superior to its virgin materials at an economical price. It is known, that the usage of synthetic rubber reduces some properties of compounds. To what extent synthetic rubber could be incorporated to obtain tyre tread compounds having a balance cost and performance is the theme of this research.

Initially the research was carried out to study the effect of incorporation of synthetic rubber (SBR and BR) into NR compounds and composites were prepared using the single stage mixing technique giving higher preference to Mooney viscosities of the rubbers at blending. Ten samples were prepared with varying the percentages of NR, SBR and BR and tested for physical properties. Then the best four samples were retested by including several extra tests such as rebound resilience and flex cracking resistance.

After selecting the best formulation, investigations were carried out by using a blend of two grades of filler (Carbon black N 330 and N 220) to see the effect on the same properties tested. At the same time, investigations were further extended by increasing the processing oil and same physical property tests were carried out.

In conclusion 50:40:10 NR/SBR/BR ternary blends containing HAF N 330 Carbon black appears to be a better sample having a balanced cost and performance that

vi

the specific mixing cycle used to develop blends. The same blend with HAF N 220 carbon black combination contributed acceptable results as to the industrial requirements, while increasing processing oil did not contribute acceptable results as to the industrial requirements.

CONTENT		Page
Title		П
Declaration		III
Acknowledgements		IV
Abstract		VI
List of Tables		XIII
List of Figures		XV
Abbreviations		XVII
CHAPTER 01		
INTRODUCTION		01
1.1 General Introduction to Blend		01
1.2 Objective		06
CHAPTER 02	n ×	
LITERATURE REVIEW		07
2.1 Basic Components of Tyre		07
2.2 Tyre Treads		09
2.2.1 Coefficient of rolling friction		11
2.2.2 Rebound resilience and hysteresis		11

	2.2	.3 Road holding	12
	2.2	.4 Tread pattern	12
2.3	Functio	n of Tyres	13
2.4	Tyre Te	esting	15
	2.4	.1 Laboratory tests	16
	2.4.	2 Nondestructive tests	17
2.5	Structur	e and Properties of NR, SBR and BR	18
	2.5.1	Natural rubber (NR)	19
	2.5.2	Styrene butadiene rubber (SBR)	20
	2.5.3	Polybutadiene rubber (BR)	22
	2.5.4	Property rating of NR, SBR and BR	24
2.6	Other C	ompounding Ingredients	25
	2.6.1	Reinforcement of blends by fillers	25
2.7	Vulcania	zation	29
	2.7.1	Sulphur cross-links	29
	2.7.2	Sulphur vulcanizing system	33
	2.7.3	Cure of rubber compounds	34
	2.7.4	Cure characteristics	36
	2.7.5	Accelerators	37
	2.7.6	Activator	37
	2.7.7	Processing aids	38
	2.7.8	Antioxidants / Antiozonants	38

CHAPTER 03

EXPERIMENTAL METHODS

3.1	Material	s and Formulations	39
3.2	Mixing a	and Compounding	40
	3.2.1	Mill mixing	43
	3.2.2	Internal batch mixer	44
	3.2.3	Mixing procedure	46
	3.2.4	Compound preparation	47
3.3	Physical	Testing Methods	49
	3.3.1	Determination of tensile properties	49
	3.3.2	Determination of abrasion properties	53
	3.3.3	Determination of hardness	57
	3.3.4	Determination of rebound resilience	59

39

CHAPTER 04

RESULTS AND DISCUSSION			61	
4.1	First Tri	al Series		61
	4.1.1	Tensile property results		61
	4.1.2	Tear strength results		64
	4.1.3	Abrasion weight loss results		65

	4.1.4	Hardness results	66
	4.1.5	Summary of first trial series	67
4.2	Second '	Trial Series	69
	4.2.1	Tensile property results	69
	4.2.2	Tear strength results	71
	4.2.3	Abrasion weight loss results	73
	4.2.4	Rebound resilience results	74
	4.2.5	Flex cracking resistance results	75
	4.2.6	Rubber hardness results	76
	4.2.7	Summary of second trial series	77
4.3	Third Tr	ial Series	78
	4.3.1	Tensile property results	80
	4.3.2	Tear strength results	82
	4.3.3	Abrasion weight loss results	83
	4.3.4	Rebound resilience results	84
	4.3.5	Flex cracking resistance results	85
	4.3.6	Rubber hardness results	86
	4.3.7	Summary of results	87
4.4	Cost Eff	ectiveness of Manufacturing Tyre Tread Compounds using	
	NR/SBF	R/BR Ternary Blends	88

CHAPTER O5

CC	CONCLUTIONS AND FUTURE WORKS		94	
	4.1	Conclusions		94
	4.2	Future Works		96

References

97

List of Tables

Table		Page
Table 01	Properties of NR and SBR relative to each other	22
Table 02	Properties of NR, SBR and BR relative to each other	24
Table 03	Types of carbon black	26
Table 04	The effect of particle size and structure of carbon black on	28
	processability and vulcanizate properties	
Table 05	Classification of sulphur vulcanization systems	33
Table 06	Properties of raw, vulcanized and reinforced natural rubber	36
Table 07	Formulations	40
Table 08	The major advantages and disadvantages of using internal mixer	45
Table 09	Cure characteristics of the rubber compounds	48
Table 10	Description of shore durometer	58
Table 11	Summary of physical property results (First Trial Series)	67
Table 12	Selected formulations	68
Table 13	Cure characteristics of selected four formulations	
	(Second Trial Series)	68
Table 14	Summary of physical property results (Second Trial Series)	77
Table 15	Selected formulations	79
Table 16	Cure characteristics of selected formulations	
	(Third Trial Series)	79
Table 17	Summary of physical property results (Third Trial Series)	87

Table 18	The best ternary blend formulation to produce tyre tread	
	compound	
Table 19	Present market prices of the rubbers used	88

List of Figures

Figure		Page
Figure 01	The View of Cross-section of a Modern Tyre	07
Figure 02	Structure Components of a Tyre	10
Figure 03	Tyre Tread Pattern	12
Figure 04	Chemical Structure of Natural Rubber	18
Figure 05	Chemical Structure of Styrene-butadiene Rubber	20
Figure 06	Chemical Structure of Polybutadiene Rubber	22
Figure 07	Reaction of Natural Rubber with Sulphur	30
Figure 08	Overall Courses of Accelerator Sulphur Vulcanization	31
Figure 09	Typical Cure Curve	35
Figure 10	A Typical View of Two-roll Mill	43
Figure 11	A Typical View of Internal Batch Mixer	45
Figure 12	Hounsfield 100R Tensile Testing Machine	49
Figure 13	Fixing of Tensile Test Piece	51
Figure 14	Abrasion Tester	
	(Hampden, Model APH – 40 – DIN Abrasion Tester)	55
Figure 15	View of Ratatable Cylinder in DIN Abrasion Testing Machine	56
Figure 16	Types of Durometers	57
Figure 17	"Drop and Rebound Concept"	59
Figure 18	Tensile Srength vs. Formulation No. of First Trial Series	61
Figure 19	Modulus (100%) vs. Formulation No. of First Trial Series	61
Figure 20	Modulus (300%) vs. Formulation No. of First Trial Series	62