AN ANALYSIS ON FLOOD MAPPING AND MITIGATION FOR AKKARAIPATTU MUNICIPAL COUNCIL AREA

by ...Mohamed Musthafa Mohamed Nouffer

DOI: 10.31357/fhssmst.2014.00623

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Science in Geographic Information System and Remote Sensing on 15th June 2014

DECLARATION

The work described in this thesis was carried out by me under the supervision of Dr. Ranjith Premasiri, Senior Lecturer, Department of Earth Resources Engineering, University of Moratuwa, Mrs. H. M. B. S. Herath, Senior Lecturer, Department of Geography, University of Sri Jayewardenepura, and a report on this has not been submitted in whole or in part to any university of any other institution for another Degree/Diploma

15/07/2014

Signature of the Candidate

Date

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

learath

Signature of the Supervisor

Signature of the Supervisor

01.08.2014

Date

15-06-2014

Date

TABLE OF CONTENTS

Declaration	п
Certification	Ш
Table of Content	IV
List of Tables	IX
List of Figures	x
Acknowledgement	XII
Abstract	XIII
CHAPTER 1: INTRODUCTION	1
1.1 Problem Statement	1
1.1.1 Flood disaster in Sri Lanka	3
1.1.2 Research Question	8
1.2 Floodplain Modeling and Mitigation	9
1.3 Hydrologic and Hydraulic Flood Modeling	9
CHAPTER 2: LITERATURE REVIEW	12
2.1 Disaster Management Projects in Sri Lanka	12
2.1.1 Preparedness Planning	12
2.1.2 Flood disaster projects in Sri Lanka	13
2.1.3 Emergency Request for Satellite Observation	14
2.1.4 Flood Mitigation in Ampara and Baticaloa Districts	16
2.2 Flood Control Alternatives	16
2.2.1 Structural Methods	17

2.2.2 Nonstructural Method	17
2.3 Flood modeling with GIS	18
2.4 HEC -2	19
2.5 HEC-RAS	19
2.6 HEC-GeoRAS and the TIN	20
CHAPTER 3: METHODOLOGY	21
3.1 Study area	21
3.2 Data Collection and Preparation	25
3.3Method	28
3.3.1 HEC-HMS	29
3.3.2 HEC-RAS	29
3.3.3 HEC-GeoHMS	30
3.3.4 Watershed delineation	30
3.3.4.1 Fill Sink	30
3.3.4.2 Flow Direction	31
3.3.4.3 Flow Accumulation	31
3.3.4.4 Steam Definition	31
3.3.4.5 Stream Segmentation	31
3.3.4.6 Catchment Grid Deline	ation 31
3.3.4.7 Catchment Polygon Pro	ocessing 32
3.3.4.8 Drainage Line Processi	ng 32

3.3.5 Stream and Sub-basin Characteristics	32
3.3.5.1 River Length	32
3.3.5.2 River Slope	32
3.3.5.3 Basin Slope	32
3.3.5.4 Longest Flow-path	33
3.3.5.5 Basin Centroid	33
3.3.5.6 Centroid Elevation	33
3.3.5.7 Centroidal Longest Flowpath	33
3.3.6 Hydrologic Parameter Estimation	33
3.3.6.1 SCS Curve Number	33
3.3.6.2 Selecting HMS Processes	34
3.3.6.3 Curve Number Index	34
3.3.6.4 River Auto Name	36
3.3.6.5 Basin Auto Name	36
3.3.6.6 Basin Parameters from Raster	36
3.3.6.7 CN Lag Method	37
3.3.7 Preparing and exporting model	37
3.3.7.1 Map to HMS Units	37
3.3.7.2 HMS Data Check	37
3.3.7.3 HEC-HMS Basin Schematic	38
3.3.7.4 Add Coordinates	38

3.3.7.5 Prepare Data for Model Export	38
3.3.7.6 Background Shape File	38
3.3.7.7 Basin Model File	38
3.3.8 HEC-GeoRAS	39
3.3.8.1 Stream Centerline	39
3.3.8.2 Stream banks	39
3.3.8.3 Flow Paths	39
3.3.8.4 Cross-Section Cut lines	40
3.3.8.5 Mannings N Value.	40
3.3.8.6 Flood Plain Delineation	41

CHAPTER 4: RESULTS and DISCUSSIONS	42
4.1 Watershed Delineation	42
4.2 HEC- HMS Models	44
4.3 Specifying Meteorological Model	49
4.4 Specifying Control Specification	51
4.5 HEC-RAS Models	55
4.6 Creating Inundation Maps	62
4.7 Finding Evacuation and Access Route	93
4.7.1 Finding Route from flood effected area to safer places	95
CHAPTER 5: CONCLUTION	97

5.1 Findings	97
5.2 Problems identified	98
5.3 Recommendations	98

LIST OF TABLES

Table 1.1: Flood in Sri Lanka (2000 - 2007)

Table 3.1 Akkaraipattu DS Divison Total Population

Table 3.2 Akkaraipattu DS Division Population

Table 3.3 Akkaraipattu DS Division Houses

Table 3.4 hydrological Soil Group

Table 3.5 Landuse and Soil Group

Table 3.6 Manning's N Values

Table 5.1 Affected Peoples and Properties

LIST OF FIGURES

Fig 1.1 Akkaraipattu Municipal Council Area

Fig1.2 Northeast monsoon rainfall.

Fig 1.3: Disaster Profile of Sri Lanka (DMC, UNDP, 2009)

Fig 1.4: Disaster Profile of Sri Lanka (DMC, UNDP, 2009)

Fig 2.1: Map produced by Alos Palsar radar images acquired on 19th May 2010 for Gampaha flood inundation. Raw data provided by JAXA under the SAS Operation.

Fig 3.1 Study Area

Fig 3.2 Akkaraipattu Municipal Council area

Fig 3.3 DEM of Akkaraipattu Municipal Council Area

Fig 3.4 Land Use in Apparaipattu Municipal Council area.

Fig 4.1 Delineated watersheds identified with drainage line

Fig 4.2 HMS model for watershed 1

Fig 4.3 HMS Model for Watershed 2

Fig 4.4 HMS Model for watershed 3

Fig 4.5 HMS Model for watershed 4

Fig 4.6 HMS model for watershed 5

Fig 4.7 HMS Model for watershed 6

Fig 4.8 Meteorological Model

Fig 4.9 Control Specification for simulation

Fig 4.10 Peak flow summery

Fig 4.11 Hydrograph at a Reach in watershed 2

- Fig 4.12 Time series flow at a reach in watershed 2
- Fig 4.13 RAS model for watershed 1
- Fig 4.14 RAS Model for watershed 2
- Fig 4.15 RAS model for watershed 3
- Fig 4.16 RAS Model for watershed 4
- Fig 4.17 RAS Model for watershed 5
- Fig 4.18 shows the RAS Model for watershed 6 delineated.
- Fig 4.19 RAS Geometry editor at cross section
- Fig 4.20 Model for Classifying by Depth
- Fig 4.21 Model for creating raster for attributes of inundation area
- Fig 4.22 Model for calculating Zonal Statistical
- Fig 4.23 Safer Places
- Fig 4.24 Evacuation and access routes

ACKNOWLEDGEMENT

I would like to express my gratitude to Dr. Ranjith Premasiri, Senior Lecturer, Department of Earth Resources Engineering, University of Moratuwa and Mrs. H. M. B. S. Herath, Senior Lecturer, department of Geography, University of Sri Jayewardenepura, for their support and encouragement throughout the study. I would also like to thank members of Geography Department of University of Sri Jayewardenepura for their time and support.

Special thanks go to Mr. Prabath Malavige, coordinator / M. Sc. in GIS & Remote for sharing his valuable insights.

I express my sincere gratitude to my family for their continuous love and encouragement during my dissertation research

ABSTRACT

This Study was conducted in Akkaraipattu Municipal Council Area in Ampara District of Sri Lanka. Where Flooding has been found as an annual disaster, there also lack proper drainage system, or an early warning system for quantifying effects of the flood in advance. This study uses GIS as a platform with available data from the area to map the flooding and measure the effects to find out ways to mitigate the damage in early.

The primary objective of this project is to develop Hydrologic and Hydraulic models using GIS tools and techniques for the flood plan analysis of Akkaraipattu Municipal area. The model simulation output will be use to analyze mitigation alternatives within a Geographic Information System.

Hydrological and Hydraulic modeling is to be performed using HEC-HMS and HEC-RAS Software. After delineating catchment basin model using HEC-GeoHMS in ArcGIS environment. The Geometry of a natural drainage model will be created using HEC-GeoRAS in ArcGIS. And will be exported to HEC-RAS with Flow data from HEC-HMS to map the inundation area with depths.

Using GIS people and properties effected will be measure for such a flood with the help of population and statistical data. There will be an analysis to find out access routes to safer places identified by local authorities to evacuate or reach the effected peoples in the flooded area without crossing the major flow path of the flood water.

CHAPTER 1

INTRODUCTION

1.1 Problem Statement

The need to study the cause and effect of flooding has begun since flooding has become a problem to society when people and their valuables become affected. Historically many solutions have been proposed to mitigate the effects of flooding but knowledge on the actual cause effect relation is lacking. With the advent of digital computers, much emphasis has been on simulating and modeling of flood events and related characteristics has become a vital part in a modern society.

Flood is amongst the most devastating natural disaster effecting human life than any other disaster. In 1998 and 2010 there were 178 Million people affected by floods and causing financial losses exceeding \$40 billion globally. It is also reported that one sixth of the global population most of them from low income earners live in a potential path of 1 in 100 year flood according to Department For International Development – UK (DFID).

Based on the Hyogo Framework for Disaster Risk Reduction's (HFDRR, 2010) flood statistical data from 1980 to 2008 have been registered almost 3000 flood events which caused nearly 200,000 deaths, while the economic loss during this period was 397 billion US\$ (annual economic loss 13.5 billion US\$). Global climate change is likely to increase temperature, change precipitation patterns and raise the frequency of extreme flood events (IPCC, 2001)

Akkaraipattu Municipal Council Area is such a place heavily experiencing flood every year. According to disaster management plan created by the DMC and Target Action (NGO) for the Akkaraipattu DS Division, out of twenty-eight (28) there are twenty-seven (27) GN divisions are vulnerable for flooding every year. The topography of Akkaraipattu Municipal Council area is almost flat and mild slope around 1 feet per kilometer variation in elevation, with clay and sand soils mostly covers residential houses and small home gardens. There are 42,325 people living in six square kilometers, the dense population with no proper flood warning system causing the damage to people and properties annually. The main objective of this study is to analyze the effect of such flood event and drive methods to reduce the damage risk.

Causes of flooding may be either natural or human induced. Natural causes may be high and long lasting precipitation or extreme events such as earth quacks and tsunamis. Man induced causes include failure of dam or levee. Mitigating in flood effects requires information on the flooding characteristics and how such characteristics propagate. Such information can be obtained through hydraulic models that are able to simulate flood events, depths, levels, velocity and timing. Hydraulics models have the ability to solve such problems. HEC-RAS/HEC-GeoRAS is one of such powerful tool to model flooding characteristics when given sufficient input data of good quality.