Analysis on Future Trends of Plastic Recycling in Sri Lanka

Bin

Dinusha Nishad Jayageeth Chandrasekera Jayaweera Gunaratna

This thesis was submitted to the Department of Chemistry of University of Sri Jayewardenepura in partial fulfillment of the requirements for the degree of

Master of Science in Polymer Science and Technology

November 2012

DECLARATION

I hereby declare that this project was conducted by me under the supervisions of Dr. M A B Prashantha and Dr. A D U S Amarasinghe, as a partial fulfillment of the requirements of the Master of Science degree in Polymer Science & Technology and the content of this thesis is true and correct to the best of my knowledge and belief.

DNJC Gunaratna

Dr. M ABPrashantha

Project Supervisor,

University of Sri Jayewardenepura,

i

Gangodawila,

Nugegoda,

Sri Lanka.

Dr. A D U S Amarasinghe

Project Supervisor,

University of Moratuwa,

Katubedda,

Sri Lanka.

23/12/2013 Date

Analysis on Future Trends of Plastic Recycling in Sri Lanka

D N J C J Gunaratna

ABSTRACT

The annual plastic inflow, outflow and the consumption patterns in Sri Lanka was studied from year 1995 to year 2011 in order to analyze their future trends. Fluctuations in the above patterns were observed with forecasting values till year 2025. It was observed that Polyethylene (PE) would be the highest consumed plastic material where Polystyrene (PS) would be the least consumed in year 2025. Further it was observed that out of 430000 tons of plastics imported 310000 tons (72.09%) would be consumed in year 2025.

In order to analyze the future trend of plastic waste in Sri Lanka, a questionnaire survey was carried out from more commonly disposed plastic items producers. Using its statistical data estimated values for the wasted quantities of Low density Polyethylene (LDPE), High density Polyethylene (HDPE), Polypropylene (PP), Polystyrene (PS), Polyethylene terephthalate (PET), and Polycarbonate (PC) were calculated from year 1995 to 2011. Based on these values their future trends were analyzed. It was observed though Polyethylene (PE) would be the highest consumed plastic material in year 2025 Polypropylene (PP) would generate the highest waste quantity while Polycarbonate (PC) generating the least. Further it was noted that, out of 310000 tons of plastics consumed around 220000 tons (70.99%) would be wasted in year 2025. Since the quantity of plastics imports would be wasted. Since half of the quantity of plastics imported plastics would be wasted. Since half of the quantity of plastics imported is wasted, it was noted that a major recycling process should be in force in future.

To analyze the future trends of plastic recycling in Sri Lanka, the current position of waste plastic collectors and the strength of the recycling industry were studied along with the recycling quantities from 2007 to 2011. This was done by carrying out another questionnaire survey along with a field observation from ten randomly selected plastic waste collectors and recyclers registered with Central Environmental Authority. The study indicated that, under the current strength of the recycling industry the recycling quantity which was 10000 tons in year 1995 would reach a quantity of 170000 tons (77.27% of the wasted) in year 2025. But it was observed that around 50000 tons (22.73% of the wasted) would still not be recycled. In the meantime the theme of the green environment concept and our achievement towards it was studied. Therefore in order to achieve the theme of the green environment concept in year 2025 or before that, it was exploded to see the future long term and short term recycling trends. During the survey since it was observed that the recycling industry is facing lot of issues related to its future development, increasing the future quantity of recycling and the strength of the recycling industry via finding solutions to these issues was identified as the main and the most crucial long term future recycling trend to achieve the theme of the green environment concept in year 2025. Meanwhile, providing assistance by the government to develop and function the National Post Consumer Plastic Waste Management Project (NPCPWMP) at its maximum strength and implementing a strategic plan to introduce plastic recycling at Provincial Councils level were identified as short term recycling trends to achieve the theme of the green environment concept before year 2025.

It indicated further, though the recycling industry is made to function at its maximum strength still a major portion of collected plastic waste will be dumped back to municipal solid waste dumping sites. It was observed that this portion would be the plastics which are derived from polymers and monomers that often cannot be separated and returned to their virgin states (mixed plastics). Based on the dumping quantities of mixed plastic waste from year 2007 to year 2011 the future trend of dumping of mixed plastic waste was analyzed. Hence it was observed that around 55000 tons (25% of the wasted) of mixed plastic waste would be dumped in year 2025. Therefore converting mixed plastic waste into valuable petroleum fuels was identified as a timely solution to eliminate mixed plastic waste from Sri Lankan soil.

Hence, increasing the future quantity of recycling and the strength of the recycling industry by treating the issues of the recyclers and the recycling industry with suggested solutions, make functioning the National Post Consumer Plastic Waste Management Project (NPCPWMP) at its maximum strength, implementing a strategic plan to introduce plastic recycling at Provincial Councils level and converting mixed plastic waste into valuable petroleum fuels were identified as timely solutions to eliminate plastic waste from Sri Lankan soil in year 2025 or before that.

ACKNOWLEDGEMENTS

I gratefully acknowledge my indebtness for many people in their unstinting support and cooperation during this project. I owe a deep debt of gratitude to my supervisor Dr. M A B Prashantha (Senior Lecturer, Department of Chemistry, University of Sri Jayewardenepura, Sri Lanka) for his advice, encouragement, guidance & help throughout the course of study. I would also thank Dr. A D U S Amarasinghe (Head, Department of Chemical & Process Engineering-University of Moratuwa Sri Lanka) for his advice, help and assistance given in various ways.

My sincere thanks to Dr. Laleen Karunanayake and to Dr. S D Manoj Chinthaka, Course Coordinators Master of Science in Polymer Science & Technology, University of Sri Jayewardenepura, Sri Lanka, for their guidance & encouragement. My special thanks go to Professor Sudantha Liyanage (Professor, Department of Chemistry, University of Sri Jayewardenepura, Sri Lanka) to Mr. Chandana Kodippili of Central Environmental Authority and to Mr. Jinadasa (Statistician) of Sri Lanka Customs for their support given to me by providing research data in timely manner.

I wish to express my gratitude & many thanks to my parents for their continued love, support, encouragement & understanding throughout my studies which kept me going. Also I wish to thank Amitha, Vimala and my sister Madusha for their support during the course of study and the writing of the thesis. My heartful thanks to Mr. Gehan Palinda Wanigasekera (BSc.-Eng., MBA), Director of Orchid Collection Private Limited, Sri Lanka, for his friendship and especially for valuable information and useful discussions regarding my research work.

V

A huge thanks goes to all my batch mates of Master of Science in Polymer Science & Technology 2010/2012 University of Sri Jayewardenepura, Sri Lanka, and to all my team members at Sampath Bank PLC, Borella Branch.

Last but not least, I thank all those who offered considerable assistance and support during my study.

DEDICATION

To my beloved parents, Amitha, Vimala, my sister Madusha, my friends, and all of my teachers whose unconditional love and support have given me strength, determination, and fortitude to accomplish any goal.

ACRONYMS

Term	Description
ABS	Acrylonitrile Styrene Butadiene
CEA	Central Environmental Authority
С	Collectors
FRP	Fibre Reinforced Plastics
GNP	Gross National Product
HS Code	Harmonized System Code
HDPE	High-density polyethylene
IR	Infra-Red
Las	Local Authorities
LDPE	Low-density polyethylene
MSW	Municipal Solid Waste
PC	Polycarbonate
PET	Polythene terephthalate
РР	Polypropylene
PS	Polystyrene
PVC	Polyvinyl chloride
R	Recyclers
Т	Tons
W	Watt

Table	Description	Page
2.1	Global per capita consumption of plastics	9
2.2	Development of semi synthetics with time	10
2.3	Development of thermosets and thermoplastics with time	13
2.4	Potential of bio plastics in different sectors of the European economy	19
3.1	Annual collection of plastic waste by the National Post Consumer Plastic Waste Management Project of Central Environmental Authority	41
3.2	Quantities of plastic collecting bins, bags tractors & trailors provided	41
3.3	Particulars of plastic waste collectors and recyclers in Sri Lanka	42
3.4	Characterization of two plastic recyclers in Sri Lanka	43
5.1	The HS nomenclature	51
5.2	Observations of the survey of more commonly disposed plastic items	62
5.3	Observations of the survey of waste plastic collectors and recyclers in Sri Lanka	68

LIST OF TABLES

LIST OF FIGURES

Figure	Description	Page
2.1	Process flow diagram for manufacturing of plastics	6
3.1	Composition of Municipal Solid Waste in Sri Lanka	33
3.2	Composition of Post-Consumer Plastic Waste in Municipal Solid Waste	36
5.1	The future trend of plastic imports in Sri Lanka	53
5.2	The future trend of plastic exports in Sri Lanka	56
5.3	The future trend of the consumption of PE, PP, PS, PET & PC	59
5.4	The future trend of the waste of HDPE, LDPE, PP, PS, PET & PC	64
5.5	The future trend of the consumption and waste of plastics	65
5.6	Collected plastic waste for recycling	70
5.7	Sorting proportions of collected plastic waste	71
5.8	Common plastic recycling process	73
5.9	Chopping of collected plastic waste	74
5.10	Recycled plastic products	75
5.11	The future trend of recycling of PP, PS, PET, HDPE, LDPE, & PC	77
5.12	The future trend of dumping of mixed plastic waste	83

TABLE OF CONTENTS

Declaration	i
Abstract	ii
Acknowledgements	v
Dedication	vii
Acronyms	viii
List of tables	ix
List of figures	x
Table of contents	xi
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	
2.1: Plastics as a novel material in modern world	5
2.2: Historical development of plastics	9
2.2.1: Parkesine	10
2.2.2: Celluloid	11
2.2.3: Formaldehyde resins-Bakelite	12
2.3: Classification of plastics	15
2.3.1: Thermoplastics	15
2.3.2: Thermosets	15
2.4: New trends in material development	18
2.4.1: Biodegradable plastics	18
2.4.2: Fibre reinforced plastics (FRP)	19
2.4.2.1: Structural applications of fibre reinforced plastics	20

xi

2.5: Controlling techniques and environmental	20
impact of plastic waste	20
2.6: Disposal and recycling concerns of plastics	24
2.6.1: Processes of recycling	26
2.6.1.1: Mechanical recycling	27
2.6.1.2: Chemical recycling/Monomer recycling/Feedstock	27
recycling	27
2.6.1.2a: Pyrolysis	28
2.6.1.2b: Hydrogenation	28
2.6.1.2c: Gasification	28
2.6.2: Value of plastic waste as an energy source	28
CHAPTER 3: PLASTIC WASTE MANAGEMENT IN SRI LANKA	
3.1: Current position of the plastic industry in Sri Lanka	31
3.2: Current status of Municipal Solid Waste and its	31
Collection in Sri Lanka	51
3.3: Plastic waste in Sri Lanka	35
3.4: Options available for handling plastic waste in	36
Sri Lanka	50
3.4.1: Recycling	36
3.4.1a: Plastic waste recycling in Sri Lanka	37
3.4.2: Burning and recovering the energy for	38
power generation or heating	

xii

3.5: National Post Consumer Plastic Waste Management		
Project of Central Environmental Authority	39	
3.5.1: Concerns of the National Post Consumer Plastic		
Waste Management Project	39	
3.5.1.1: Development of the plastic waste collection	40	
system	τu	
3.5.2: Particulars of plastic waste collectors and recyclers		
registered with Central Environmental Authority	42	
3.6: Characterization of two plastic recyclers in Sri Lanka	42	
CHAPTER 4: RESEARCH METHODOLOGY		
4.1: Methodology for the statistical analysis of plastic	44	
inflow, outflow and the consumption pattern	44	
4.2: Methodology for the survey of more commonly	46	
disposed plastic items	10	
4.3: Methodology for the survey of waste plastic	47	
collectors and recyclers in Sri Lanka	17	
CHAPTER 5: RESULTS AND DISCUSSION		
5.1: Results of Statistical analysis on future trends of	50	
plastic inflow outflow and consumption in Sri Lanka		
5.1.1: The HS nomenclature	50	
5.1.2: The future trend of plastic imports in Sri Lanka	52	
5.1.3: The future trend of plastic exports in Sri Lanka	54	
5.1.4: The future trend of the consumption of PE, PP, PS,	58	
PET & PC in Sri Lanka	20	

xiii

	sults of the survey of more commonly disposed stic items	60
-	arket share of a plastic item	61
5.2.2: Tł	ne future trend of the waste of HDPE, LDPE, PP,	
PS, PET & PC		63
5.3: Res	ults of the survey of waste plastic collectors and	(7
rec	yclers in Sri Lanka	67
5.3.1: Co	ollection of plastic waste for recycling	69
5.3.1.1:	Source separation	69
5.3.1.2:1	From the dump sites of municipal solid waste	69
5.3.2: Av	verage daily collection and recycling capacities	69
5.3.3: Cl	leaning of collected plastic waste	70
5.3.4: Id	lentifying and sorting of collected plastic waste	70
ir	nto different varieties	70
5.3.5: So	orting proportions of plastic waste	71
5.3.6: Co	ommon plastic recycling process	71
5.3.7: Te	echnologies used to recycle plastic waste	74
5.3.8: Er	nergy utilization for recycling	74
5.3.9: Cu	urrent recycled products of plastic waste	74
5.3.10: 0	Quality of the recycled products of plastic waste	75
(W)	hether it's similar/different to the virgin material)	15
5.3.11: F	Future trends of recycling of plastic waste	76
CHAPTER 6: CONC	LUSIONS AND RECOMMENDATIONS	
6.1: Con	clusions	88
6.2: Rec	ommendations	90

6.2: Recommendations

xiv