CHARACTERIZATION OF RIVER SAND DEPOSITS AND

ASSESMENT OF THE SUITABILITY OF MINING SITES

By

Withanachchige Dona Dasuni Rangavasana Ganegama

Thesis submitted to the University of Sri Jayewardenapura for the award of the Degree of Master of Science in Geographic Information Systems and Remote Sensing on 2014

DECLARATION

I do hereby declare that the work reported in this project report was exclusively carried out by me under the supervision of Dr. Ranjith Premasiri and Dr. (Rev) Pinanawala Sangasumana Thero. And a report on this has not been submitted in whole or in part to any University or any other institution for another degree.

Date: 03 05 2014

W.D.D.R.Ganegama

DECLARATION

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Certified by:

Supervisors :

Date: 03-05-2014

Dr. Ranjith Premasiri

Date: 08 /05/2014

Dr. (Rev) Pinanawala Sangasumana

(2nd Supervisor)

TABLE OF CONTENTS

CHAPTER		
Table of Contents		
List of Tables		
List of Figures		
List of Annexes		ix
Abbreviations		x
Acknowledgements		xi
Abstract		xii
СНАРТ	ER 1 – INTRODUCTION	1 – 16
1.1 Ove	r View of the Construction Industry & River Sand Mining	1
1.1.1	The Demand for River Sand	3
1.1.2	Rainfall and the Nature of River Sand Deposits	5
1.1.3	The Role of Geological Survey & Mines Bureau (GSMB) in	6
	Sand Industry	
1.2 Res	earch Problem	11
1.2.1	Mismatch of the Sand Deposits and Sand Mines in Kelani River	11
1.2.2	Environmental Consequences of Irrational River Sand Mining	11
	in Kelani River	
1.3 Obj	ectives of the Study	13
1.3.1	Main Objective	13
1.3.2	Secondary Objectives	14
1.4 Stuc	ly Area	14

i

1.5 Significance of the Study	15
1.6 Research Hypothesis	16
1.7 Limitations	16
CHAPTER 2 - LITERATURE REVIEW	<mark>17 – 49</mark>
2.1. River Sand & Mining Activities	17
2.1.1. Hydrology & the River Network of Sri Lanka	17
2.1.2. Geology of Sri Lanka	19
2.1.3. Sand, characteristics of Sand & River Sand	21
2.1.3.1. What is Sand	21
2.1.3.2. Characteristics of Sand	22
2.1.3.3. River Sand	22
2.1.4. Mining and River Sand Mining	23
2.1.5. Manual Sand Surveying Method	24
2.1.6. Problems and issues in river sand mining	24
2.1.7. Solutions & Suggestions Given by the Scholars	27
2.2. Remote Sensing and Satellite Images	27
2.2.1. What is Remote Sensing (RS)	28
2.2.1.1. RS Platforms	28
2.2.1.2. Types of Sensors	29
2.2.1.3. Process of Satellite Remote Sensing	30
2.2.1.4. Characterization of Satellite Remote Sensing	32
2.2.2. Characterization of Satellite Images	34
2.2.3. Image Analyzing and Interpretation	38
2.2.3.1. Image Pre-processing	39
a. Geometric Correction	39
b. Image Enhancement	40
c. Image Mosaicking	41

	d. Histrogram and Image Characteristics	42
	e. Image Fusion	43
2.2	2.3.2. Image Classification	44
2.2.4.	Image Analysis & Interpretation	47
2.2	2.4.1. Data Merging and GIS Integration	49
СНАРТ	ER 3 – METHODOLOGY	<mark>5</mark> 0 – 68
3.1 St	udy Area	50
3.1.1	Topography	52
3.1.2	Climate	54
3.1.3	Geology	54
3.2 D	Data Collection	56
3.2.1	Image Data	56
3.2.2	Vector and Attribute Data	57
3.2.3	Limitations	57
3.2.4	Software and Tools Used	59
3.3 D	Data Preparation Method	59
3.4 I	mage Analysis and Classification	63
3.4.1	Supervised Classification	63
3.4.2	Unsupervised Classification	64
3.4.3	Single Band Classification	66
СНАРТ	ER 4 - RESULTS AND DISCUSSION	69 – 92
4.1 Da	ata Preparation	69
4.1.1	Image Data	69

4.1.2	Attribute Data	72
4.2 Data	a Classification	72
4.2.1	Supervised Classification	72
4.2.2	Unsupervised Classification	77
4.3 Data	a Analysis and Discussion	80
СНАРТ	ER 5 - CONCLUSIONS AND RECOMMENDATIONS	- 94
5.1 Cond	lusion	93
5.2 Reco	mmendations	94
Referen	xes	5 – 97

LIST OF TABLES

Table No Caption	Page	
Table 1.1: Gross National Product (Constant Prices) and Contribution of Construction Industry.	f 2	
Table 1.2: Four Major Rainy Seasons in Sri Lanka	6	
Table 1.3: Mining License Categories	8	
Table 1.4: Issued River Sand License in Lower West Coast		
Table 1.5: Comparison of Labour Intensive Methods & Technology		
Base Method in Sand Survey.	18	
Table 3.1: IKONOS Satellite Sensor Characteristics	56	
Table 3.2: Collected Data Layers, Scales, Formats and the Sources	57	
Table 3.3: Coordinates of Selected Study Area (SL Kandawala 200,000)	57	
Table 3.4: Training Sample ID's	63	
Table 4.1: Training Sample for Supervised Classification	74	
Table 4.2: Sand Survey Data -2012 (GSMB)	82	
Table 4.3: Sand Deposit Depth (m)	84	
Table 4.4: Calculated Minable Volume in the Study Area	87	
Table 4.4: Calculated Minable Volume in the Study Area	89	

LIST OF FIGURES

Table No	Caption	Page
Figure 1.1	: The Growth of Gross National Product (Constant Prices)	3
	and Growth of Construction Industry	
Figure 1.2	: Construction sector growth rate	3
Figure 1.3	: Raw Material Unit Price Index 2008 – 2012	5
Figure 1.4	: River Sand Licenses Issued in Sri Lanka	7
Figure 1.5	: Damages due to irrational sand mining (GSMB,2012)	13
Figure 2.1	: River Network of Sri Lanka	18
Figure 2.2	: Generalized Geology map of Sri Lanka	20
Figure 2.3	: Modes of Sedimentation Transportation in Rivers	23
Figure 2.4	: Wellangiriya -Pumping location for lift irrigation scheme	25
Figure 2.5	: Satellite images observed by visible(A), Near Infrared(B) RS	29
	and Thermal Infrared(C) of optical sensor	
Figure 2.6	: Process of Satellite Remote Sensing	31
Figure 2.7	: Spatial Resolution	32
Figure 2.8	: Temporal Resolution of IKONOS	33
Figure 2.9	: Electromagnetic Spectrum	34
Figure 2.10	: Reflection and Radiation of Electromagnetic Waves	34
Figure 2.11	: Types of Images	35
Figure 2.12	: Characteristics of a digital image	35
Figure 2.13	: Multi Layers of a Multi – Spectral Image	36
Figure 2.14	: Visualization of an Image	38
Figure 2.15	: Geometric Correction	40
Figure 2.16	: Image Enhancement	41

Figure 2.17 : Enhanced Image	41	
Figure 2.18 : Image Mosaicking		
Figure 2.19 : Histrogram and Image Characteristics	43	
Figure 2.20: SPOT multispectral image of the test area and Thematic map	45	
derived from the SPOT image using an unsupervised		
classification algorithm.		
Figure 2.21 : Image Classification	46	
Figure 2.22 : Spectral reflectance's of sand, mud, and green vegetation.	48	
Figure 3.1 : Kelani River Catchment Area	51	
Figure 3.2 : Topography of the Kelani Catchment Area(DEM)	53	
Figure 3.3 : Geology Map of the Study Area	55	
(Geological Survey, Part of Sheet 16)		
Figure 3.4 : Study Area	58	
(Based on Survey Department's 1:50,000 Topology Sheet 67)		
Figure 3.5 : Summery of the Process of the Study	59	
Figure 3.6 : Image Data Preparation	60	
Figure 3.7 : Parameters of Kandawala Spatial Reference System	61	
Figure 3.8 : Sand Mining Location Preparation	62	
Figure 3.9 : Methodology of Supervised Classification	64	
Figure 3.10: Methodology of Unsupervised Classification	66	
Figure 3.11: Methodology of Single Band Classification (Density Slicing)	68	
Figure 4.1 : Multispectral & Panchromatic Bands (IIKONOS)	70	
Figure 4.2 : Study Area Satellite Image (IKONOS)	71	
Figure 4.3 : Mining License Locations in the Study Area	73	
Figure 4.4 : Map of Supervised Classification - Raster Format	75	
Figure 4.5 : Identified Deposits with Supervised Classification	76	

Figure 4.6 : Map of Unsupervised Classification - Raster Format	78
Figure 4.7 : Identified Deposits with Unsupervised Classification	79
Figure 4.8 : Identified Deposits - Supervised Vs Unsupervised Classifications	s 81
Figure 4.9 : Identified Deposits Vs Sand Survey Deposits	83
Figure 4.10:Extractable River Sand Deposits	85
Figure 4.11: Model for Identify & Quantify the River Sand Deposits	91

LIST OF ANNEXURES

Annex No Caption

- Annex 1 : Kelani River Sand Mining License Holders in Colombo Gampaha Districts
- Annex 2 : Total Deposits with Supervised Classification

Annex 3 : Total Deposits with Unsupervised Classification

LIST OF ABREVIATIONS

Abbreviation

Anon	-	Unknown
DID	-	Department of Irrigation and Drainage (Malaysia)
DN	-	Digital Number
DSD	- 7	Divisional Secretariat Divisions
ex	-	Example
ft ³	-	Cubic Feet
GIS	- 0	Geographic Information System
GND	-	Grama Niladari Divisions
GPS	-	Global Positioning System
GSME	3-	Geological Survey and Mines Bureau
i.e.	-	That is
JAES		Japan Aerospace Exploration Agency
Km	-	Kilo Meter
m	-	Meter
m ²	-	Square Meter
m ³	-	Cubic Meter
m3/s	-	Cubic Meter per Second
NIR	-	Near Infrared
n.d	-	No Date
No	- 1	Number
Nos	-	Numbers
RS	-	Remote Sensing
RGB	- 20	Red, Green, Blue (multispectral band combination)
SIC	-	Satellite Imagine Corporation

х

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my supervisors, Dr. Ranjith Premasiri, Senior Lecturer, Department of Earth Resources Engineering, University of Moratuwa and Dr. (Rev) Pinanawala Sangasumana, Senior Lecturer & Head of Geography Department, University of Sri Jayewardenapura for the guidance and directions provided to me in conducting this study.

I would like to appreciate the monumental patience, the kind support, and most importantly encouragement extended to me by Dr. Ranjith Premasiri, Senior Lecturer, Department of Earth Resources Engineering, University of Moratuwa which stood by me like a pillar of strength enabling me to complete this research successfully.

The Chairman, Board of Directors, The Director General, General Manager, Deputy Directors, Registrar, and the members of the staff at Geological Survey Mines Bureau who supported me in conducting this study need to be mentioned with lot of gratitude.

Also I am very much grateful to all the Lecturers, Instructors of the MSc program in GIS and Remote Sensing and the staff of the Postgraduate Institute of Science, for the great support and guidance throughout the whole course.

I would also like to express my sincere gratitude to Mr. H. M Prabath Jayantha, Head of GIS Section, Sri Lanka Ports Authority, for his great support during the entire period of my studies.

Further, I wish to thank my husband and all the members of my family for the support extended to me.

CHARACTERIZATION OF RIVER SAND DEPOSITS AND ASSESMENT OF THE SUITABILITY OF MINING SITES

W.D.D.R. GANEGAMA

ABSTRACT

Construction industry is a key sector in the Sri Lankan economy which is recording a higher growth amongst other sectors. River sand is one of the key ingredients of all construction activities and the demand for the river sand is ever increasing. As a result over extraction of river sand, irrational mining and illegal sand mining pause a series of serious environmental hazards such as river bank erosion, sea water intrusion, lowering the water level, exposure of the river bed to solar radiation and lowering of the ground water level. Geological Surveys & Mines Bureau (GSMB) is the regulating body of river sand mining, sand storage, sand transport and trading and it is observed that while administering the river sand mining, there is a disparity of where the river sand deposits are and where the mining activities are being carried out. The sand surveys were carried out manually and it is a time consuming, tedious and very expensive exercise. The study focuses on characterization of river sand deposits using technology based remote sensing method to assess the suitability of mining sites. The study is limited to a 6 Km stretch of the Kelani River due to monitory and time constraints. I have used the IKONOS geo referenced satellite images, one panchromatic image (Band) in 1 meter resolution and 4 multispectral images (Bands = Blue, Green, Red and Near Infrared) in 4 meter resolution. The images were processed by using supervised and unsupervised methods and identified the river sand deposits. The river sand deposits were quantified and evaluated authorized minable quantity allowed to be extracted in each of the mining sites. The coordinates of the existing mining sites were taken and the locations of the mining sites were overlapped and compared with the identified river sand deposits. The disparity and mismatches of the existing mining sites and deposits have been identified in the study. I propose the model to be adopted and fine-tuned by the GSMB as the

primary basis of regulating and administering the river sand mining process. Also, I wish to propose the remote sensing based sand surveys to be conducted quarterly by GSMB based on the four main rainy seasons and if high resolution radar images have been utilized, identification of the river sand deposits would probably have been more effective. River sand mining is done on all rivers in Sri Lanka either legally or illegally. By regulating the river sand mining based on a rational basis is one of the key areas to overcome numerous serious environmental hazards and I have made recommendations based on my study.