DOI :10.31357/fapsmst.2012.00411

DEVELOPMENT OF A BITTER MELON BASED SUPPLEMENTARY CAPSULE

BY

PANADURA ARACHCHIGE NADI GAYANI PERERA

Thesis submitted in partial fulfilment of the requirement for the Degree of Master of Food Science and Technology, Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

2012

DECLARATION

The work described in this project was carried out by me at the University of Sri Jayawardenepura, under the supervision of Prof. K. K. D. S. Ranaweera, Department of Food Science and Technology, University of Sri Jayawardenepura; Director, Bandaranaike Memorial Ayurvedic Research Institute, Nawinna, Maharagama; and this thesis has not been submitted in whole or in part of any University or any other institution for another Degree/Diploma.

22/03/2014

Date

P. A. N. G. Perera

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University of Sri Jayawardenepura for the purpose of evaluation.

Signature

Supervisor:

Prof. (Mr.) K. K. D. S. Ranaweera Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

Director,

Bandaranaike Memorial Ayurvedic Research Institute, Nawinna, Maharagama, Sri Lanka Dedicated to my beloved mother, father and brother for their eternal love and support.

Table of content

List of tables	XI
List of figures	XII
Abbreviations	XIII
Acknowledgement	XIV
Abstract	XV
Chapter 1 – Introduction	1
Chapter 2 – Literature review	3
2.1 Dietary supplements	3
2.2 Bitter melon/ Bitter gourd/ Bitter squash/ Momordica charantia Linn	4
2.2.1 Botanical description of Momordica charantia	4
2.2.2 General appearance	5
2.2.3 Origin and distribution	5
2.2.4 Varieties	6
2.2.5 Properties according to Ayurveda	6
2.2.6 Contraindications	6
2.2.7 Side effects and toxicity	7
2.2.8 Interactions with other drugs	8
2.2.9 Nutritional aspect of Momordica charantia	9
2.2.10 <i>Momordica charantia</i> as a functional food	11
2.2.11 Major chemical constituents/ Phytochemicals	11
2.2.11.1 Flavonoids	12
2.2.11.2 Alkaloids	14

	2.2.11.3 Tannins	15
	2.2.11.4 Saponins	15
	2.2.11.5 Glycosides	16
	2.2.11.6 Phenols	17
	2.2.11.7 Steroids	17
	2.2.11.8 Terpenoids	18
	2.2.11.9 Proteins	18
2.2	2.12 Medicinal uses	19
2.2	2.13 Dose	21
2.2	.14 Recommended dosage forms	21
2.2	2.15 Pharmacology	21
2.2	2.16 Experimental and clinical pharmacology	22
	2.2.16. 1 Antidiabetic activity	22
	2.2.16. 2 Normalization activity of the hypertension	23
	2.2.16. 3 Stomachic activity	24
	2.2.16. 4 Liver and biliary aiding activity	24
	2.2.16. 5 Anti leprotic and anti psoriatic activity	24
	2.2.16. 6 Anti cancerous and anti tumorous activity	25
	2.2.16. 7 Activity of anti obesity	25
	2.2.16. 8 Anti microbial activity	26
	2.2.16. 9 Anti oxidative activity	26
	2.2.16.10 Anti viral activity	27
	2.2.16.11 Anti HIV agent	27

2.2.16.12 Anti fertility	28
2.2.16.13 Larvicidal activity	29
2.2.16.14 Anti-genotoxic activity	29
2.2.16.15 Anti-helmintic activity	29
2.2.16.16 Anti-malarial activity	30
2.2.16.17 Anti-neoplastic activity	30
2.2.16.18 Anti ulcerative and immuno modulatory activity	30
2.3 Encapsulation and capsule dosage forms	31
2.4 Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP/ OES)	32
2.5 Assay of Alpha Amylase inhibitory activity to detect the hypoglycemic acti	vity33
Chapter 3 – Experimental methods	34
3.1 Development of the bitter melon based capsule	34
3.1.1 Identification of Momordica charantia (Bitter melon) and Collection	
of the fruits/ pods	34
3.1.2 Preparation and selection of dried bitter melon powder	34
3.1.3 Determination of the dose of capsules	36
3.1.4 Determination of the needed liquid extract of bitter melon fruits	36
3.1.5 Preparation of bitter melon aqueous extract	37
3.1.6 Formulation of bitter melon based capsules	39
3.2 Determination of Nutritional Value	39
3.2.1 Determination of moisture	39
3.2.2 Determination of total ash	40
3.2.3 Determination of crude fiber	41

3.2.4 Determination of crude protein 4			
3.2.5 Determination of total fat			
3.2.6 Determination of reducing sugar			
3.2.6.1 Determination of Reducing Sugar	45		
3.2.6.1.1 Standardization of Fehling solution	45		
3.2.6.2. Determination of Total Sugar	46		
3.2.7 Determination of vitamin C			
3.2.7.1 Standardization of indophenols dye solution	47		
3.2.7.2 Determination of ascorbic acid in Bitter melon sample	47		
3.2.8 Determination of Mineral content using Inductively Coupled			
Plasma Spectrometer (ICP-OES)	47		
3.2.8.1 Sample Preparation – Microwave Digestion 4			
3.2.8.2 Measurement of Metals Using ICP-OES	48		
3.3 Determination of microbial activity	49		
3.3.1 Determination of total plate count 49			
3.3.2 Determination of yeast and moulds 51			
3.3.3 Determination of coliform count 5			
3.3.3.1 Examination of presumptive coliforms	51		
3.3.3.2 Examination of faecal coliforms	52		
3.4 Determination of medicinal value	53		
3.4.1 Preparation of extracts	53		
3.4.2 Phytochemical analysis	54		
3.4.2.1 Flavonoids	54		

3.4.2.2 Alkaloids	55
3.4.2.3 Tannins	55
3.4.2.4 Saponins	56
3.4.2.5 Glycosides	56
3.4.2.6 Phenols	57
3.4.2.7 Steroids	57
3.4.2.8 Terpenoids	58
3.5 Assay of alpha amylase inhibitory activity	58
Chapter 4 – Results and Discussion	60
4.1 Development of the bitter melon based capsule	60
4.1.1 Identification of Momordica charantia (Bitter melon) and Collection	
of the fruits/ pods	60
4.1.2 Preparation and selection of dried bitter melon powder	61
4.1.3 Determination of the dose of capsules	63
4.1.4 Determination of the needed liquid extract of bitter melon fruits	63
4.1.5 Preparation of bitter melon aqueous extract	64
4.1.6 Formulation of bitter melon based capsules	65
4.2 Determination of Nutritional Value	66
4.2.1 Determination of moisture	66
4.2.2 Determination of total ash	67
4.2.3 Determination of crude fiber	67
4.2.4 Determination of crude protein	68
4.2.5 Determination of total fat	69

4.2.6 Determination of reducing sugar	70
4.2.7 Determination of vitamin C	71
4.2.8 Determination of Mineral content using Inductively Coupled	
Plasma Spectrometer (ICP-OES)	72
4.3 Determination of microbial activity	74
4.3.1 Determination of total plate count	74
4.3.2 Determination of yeast and moulds	75
4.3.3 Determination of coliform count	76
4.4 Determination of medicinal value	77
4.5 Assay of alpha amylase inhibitory activity	80
Chapter 5 – Conclusions	81
Chapter 6 - Suggestions and recommendations	83
References	84 - 91

List of tables

Table 1	Bitter gourd or bitter melon (<i>Momordica charantia</i>), fresh, raw,		
	nutritive value per 100 g nutritional composition	10	
Table 2	Moisture content of two varieties of M. charantia fruits at different		
	temperatures	61	
Table 3	Moisture content of the samples of dried powder and extract mixture	66	
Table 4	Ash content of the samples of dried powder and extract mixture	67	
Table 5	Crude fiber content of the samples of dried powder and extract mixture	67	
Table 6	Crude protein content of the samples of dried powder and extract		
	mixture	68	
Table 7	Total fat content of the samples of dried powder and extract mixture	69	
Table 8 Reducing sugar and total sugar of the samples of dried powder and			
	extract mixture	70	
Table 9	Total plate count of the samples of dried powder and extract mixture	74	
Table 10	Yeast and moulds of the samples of dried powder and extract mixture	75	
Table 11	Coliform count of the samples of dried powder and extract mixture	76	
Table 12	Phytochemical analysis of Momordica charantia Fruit	77	
Table 13	Reducing sugar content in solution A and B	80	

List of Figures

Figure 1	Matured bitter melon fruits/ pods	
Figure 2	Molecular structure of the flavone backbone	
	(2-phenyl-1, 4-benzopyrone)	12
Figure 3	Isoflavan structure	13
Figure 4	Neo flavonoids structure	13
Figure 5	Structure of momordicin	14
Figure 6	Structure of catechin	15
Figure 7	Structure of a saponin	16
Figure 8	Structure of charantin	16
Figure 9	Structure of a hard gel capsule	31
Figure 10) Structure of an ICP-OES	32
Figure 11	Structure of an ICP	32
Figure 12	2 Flow diagram for the preparation of dried bitter melon powder	35
Figure 13	Flow diagram for the preparation of bitter melon aqueous extract	38
Figure 14	Fruits of triangular type variety	60
Figure 15	5 Fruits of small/ short type variety	60
Figure 16	5 Moisture variation with drying temperature	61
Figure 17	7 Bitter melon fruit powder of triangular type variety dried at 50^{0} C	62
Figure 18	Bitter melon aqueous extract	64
Figure 19	Prepared bitter melon capsules	65
Figure 20) Proximate analysis of the product	69

Abbreviations

CAM	-	Complementary and Alternative Medicine
DSHEA	-	The Dietary Supplement Health and Education Act
FDA		Food and Drug Administration
GMP	-	Good Manufacturing Practices
IUPAC	-	International Union of Pure and Applied Chemistry
ROS	-	Reactive Oxygen Species
HIV	-	Human Immunodeficiency Virus
USDA		United States Department of Agriculture
АМРК	-	Adenosine 5 Mono Phosphate Kinase
DM	-	Diabetes Mellitus
LDL		Low Density Lipo-protein
CLnA	Ξ.	Conjugated Linolenic Acid
MAP30		Momordica Anti-human Immuno virus Protein
AIDS	-	Acquired Immuno Deficiency Syndrome
SMS	-	Sodium Meta-bi Sulphate
WHO		World Health Organization
AOAC	-1	Association of Analytical Communities
АНРА	•	American Herbal Product Association
ICP	-	Inductively Coupled Plasma

ACKNOWLEDGEMENT

First and foremost I wish to express my sincere gratitude to my supervisor professor K. K. D. S. Ranaweera, Department of Food Science and Technology, University of Sri Jayewardenepura, Nugegoda; Director of Bandaranaike Memorial Ayurvedic Research Institute, Nawinna, Maharagama; for his excellent advices, guidance, valuable suggestions, support and contribution throughout my research project.

I would like to extend my gratitude to Dr. Jagath Wansapala, Co-ordinator of the M.Sc. Food Science and Technology Programme, Mrs. Rupika Perera, Assistant Co-ordinator of the M.Sc. Food Science and Technology Programme and the academic staff of the M.Sc. Food Science and Technology Programme, University of Sri Jayewardenepura, Nugegoda, for their advices, co-ordination and support throughout the research project.

I would like to express my thanks to the technical staff of the Department of Food Science and Technology, University of Sri Jayewardenepura, Nugegoda, for their technical assistance. My sincere thank goes to Mr. Rupasingha for his valuable support during all the laboratory works.

I'm also grateful to all of my colleagues who followed the M.Sc. course with me, especially Mr. Randika Dasanayake, Mr. Nishan Perera, Mr. Nalin Ariyarathne, Mrs. Dhammika Dharmarathne, Ms. Theekshani Liyanage, Ms. Waruni Samarasekara, Mrs. Lasantha Abenayake and Mr. Mohammed Ishan for their assistance in numerous ways to finish my project with success.

Finally my heartiest thank goes to my beloved parents and brother for their understanding, dedication, kind support and assistance throughout my entire research project.

Development of a Bitter Melon Based Supplementary Capsule

By: Panadura Arachchige Nadi Gayani Perera

ABSTRACT

Bitter Melon (*Momordica charantia*) fruits are consumed by mankind since centuries as a vegetable and herb. But most people are reluctant to consume it due to its undesirable taste of bitterness. The objectives of the present study were to develop a bitter melon based supplementary capsule which was in the progress of masking bitterness, to nutritionally and microbiologically analyze the finished product, to evaluate its medicinal value and to evaluate the hypoglycemic activity by the assay of alpha amylase inhibitory activity.

The triangular type of *M. charantia* fruits dried at 50 °C was selected to prepare capsules. In the development of capsules, usage of only dried powder was not applicable, as the WHO recommended daily dose of dried powder ranges from 2g - 15g. On the other hand, despite the recommended daily dose of aqueous extract ranges from 300 mg to 600 mg, aqueous extract alone cannot be the best presentation as it lacks fibre, minerals and some other phytochemicals. Therefore, the dried powder enriched with aqueous extract with the ratio of 7:1 (350mg: 50mg) was considered as a beneficial formulation to meet the recommended daily requirement.

Hence, 1g of extract was mixed with 7g of dried powder to prepare capsules. Required millilitres of water extract which resembled 1mg of solid extract was determined according to the extraction method of Harbone, (1998). According to the results obtained, 1mg of solid extract was equivalent to 0.11 ml of water extract of dried bitter melon powder. Therefore, needed water extract was 110 ml to have 1g of extract. A volume of 110 ml of water extract was mixed with 7g of dried powder of *M. charantia* and kept in a dryer at 50 °C for several days. A finished capsule was weighed approximately about 400mg which resembled 50mg of extract and 350mg of dried powder and the determined beneficial dose was 2 capsules three times per day.

Finished products were tested nutritionally (on dry basis) and microbiologically to assess the nutritional value and microbial quality. The developed supplementary capsule had 50.79% of carbohydrate, 28.50% of protein, 13.77% of fiber, 5.72% of fat, 7.96% of moisture, 7.03% of ash, 7.52% of reducing sugar, 9.88% of total sugar and 54mg/100g of vitamin C respectively. It was also found to contain 5432.4mg/100g of potassium, 698.5mg/100g of phosphorus, 474.5mg/100g of calcium, 295.9mg/100g of magnesium and 8.14mg/100g of iron in dry basis. Total energy value was 368.64 kcal/100g. The total plate count (2.6 * 10^1 cfu/g), Yeast and moulds (7.9 * 10^2 cfu/g) and coliforms (0.2 * 10^1) were in the range of acceptable values according to American Herbal Products Association (AHPA). No faecal coliforms were detected in the product.

Phytochemical analysis was done qualitatively according to Harbone (1998) and Evans, (1989) to determine and compare the bioactive phyto-compounds in raw fruit and the dried powder of *M. charantia* by using aqueous and methanol extracts. It was revealed that the dried powder of bitter melon fruits were found to be rich with flavonoids, alkaloids, tannins, saponins, glycosides, phenols and steroids as same as the fresh fruit and accordingly it can be suggested to have potential medicinal values in it.

Supplementary capsules were subjected to the assay of alpha amylase inhibitory activity and the results obtained indicated some sort of inhibitory activity.

Hence, developing a bitter melon based supplementary capsule with higher nutritional value, medicinal value, keeping quality, cost effectiveness and lower microbial activity can be considered successful.