EFFECT OF COMPOSITION ON PHYSICOCHEMICAL PROPERTIES OF LINEAR LOW DENSITY POLYETHYLENE/NATURAL RUBBER BLENDS

By

G.K.R.P Gajanayake

Dissertation submitted, as partial fulfillment of the requirements for the degree of Master of Science in Polymer Science and Technology to the Faculty of a Applied Sciences, University of Sri Jayawardhanapura Sri Lanka

> Department of Chemistry University of Sri Jayawardhanapura July , 2014

Declaration

I hereby declare that this submission is a result of a work carried out by me and the best of my knowledge it contains no materials previously written or published by another author nor material which has been accepted for the award of any degree or acceptable qualification of a university or other institute of higher education, except where the due reference material is made.

Ramendy

GKRP Gajanayake

July 2014

I certify that the above statement made by GKRP Gajanayake, is true and this dissertation is suitable to the University of Sri Jayawardhanapura for the purpose of evaluation.

i

Date 10.07.2014

Abitty Conf

Dr. S.M. Egodage (Supervisor)

Date-----

Dr. S.P.D.M. Chinthake (Co-Supervisor)

ACKNOWLEDGEMENT

I wish to express my deepest gratitude to my principal supervisor, Dr.Shantha Egodage, Senior Lecturer, of the Department of Chemical and Process Engineering, University of Moratuwa, Sri Lanka. Her constant advice and guidance contributed immensely for conducting the research efficiently and effectively. Her expert scientific knowledge and skill smoothed out the problems I encountered in the course of the research, and directed me towards the achievement of the required objectives.

I would like to extend my sincere thanks to my co-supervisor, Dr. Manoj Chinthaka, Senior Lecturer at the Department of Chemistry, University of Sri Jayawardhanapura, for providing valuable advice and guidelines to handle various issues during the research.

I am grateful to Dr. Shantha Amarasinghe, former Head, Department of Chemical and Process Engineering, University of Moratuwa, for granting me permission to conduct the research at the Chemical and Process Engineering Department, University of Moratuwa.

I express my gratitude to Dr. Dilhara Edirisingha of the Rubber Research Institute of Sri Lanka, for giving me permission to use the laboratory facilities at the Institute.

I am deeply grateful to Dr. Shantha Walpalage, Senior Lecturer of the Department of Chemical and Process Engineering, University of Moratuwa, Sri Lanka. His attentiveness and interest in this study, continuous support, advice and encouragement motivated me immensely and guided me to successfully complete the research within the specified time period.

My special thanks go to Dr. Upul Rathnayake of the Rubber Research Institute of Sri Lanka for his valuable scientific and technical insight which was extremely beneficial for my research activities.

I wish to thank Mr. Kalum Gunawardana, Technical Officer of the Polymer Process Laboratory, University of Moratuwa, for his co-operation and willing assistance.

I am grateful to Mr. Chandrapala, Senior Technical Officer, Department of Material Science and Engineering, University of Moratuwa for supporting me in numerous ways to carry out experiments.

I appreciate the support extended by Mr. Wijesinghe, Senior Technical Officer, Department of Environment and Forestry, University of Sri Jayawardhanapura.

Finally, I am deeply grateful to my wife, Rasika for her patient support, motivation and encouragement. I dedicate this thesis my parents and teachers.

Content

	Page No
Content	iv- vi
List of abbreviations	vii-viii
List of figures	ix-xi
List of tables	xiii
Abstract	

Chapter 01

Introduction

2
2-3
3
3
3

Chapter 02 Literature Review

2.0	Principles of Polymer Blends	5
2.1.1	Thermodynamics of polymer blends	6-8
2.1.2	Miscible polymer blends	8
2.1.2.1	Partially miscible polymer blends	9
2.1.2.2	Immiscible Polymer Blends	9
2.2	Importance of viscosities of individual polymers on blend morphology	10-11
2.3	Use of LLDPE in NR/ thermoplastic blends	11-14
2.4	Crosslinking systems for NR-LLDPE blends.	15-22
2.4.1	Importance of co-agents in peroxide vulcanization	22-24
2.5	Processing equipment used in thermoplastic- rubber blend preparation.	25-27

Chapter 03

Methodology

3.1	Raw materials and their characterization	28
3.1.1	Natural rubber (NR	28
3.1.2	Linear low density polyethylene (LLDPE)	28-29
3.1.3	Dicumyl peroxide DCP	29
3.1.4	Maleic anhydride MAH	30
3.1.5	Calcium carbonate	30
3.1.6	Other reagents	31
3.2	Formulation	32-33
3.3	Mixing cycles	34
3.4	Experimental	
3.4.1	Determination of rheological properties	34
3.4.1.1	Viscosity	34
3.4.1.2	Cure characteristics	34-35
3.4.1.3	Determination of extrudability	35-38
3.4.2	Vulcanization	38
3.4.3	Determination of physicomechanical properties	38
3.4.3.1	Hardness	39
3.4.3.2	Tensile stress-strain properties	39-41
3.4.3.3	Tear resistance	42
3.4.4	Chemical properties	42
3.4.4.1	Effect of liquid	43
3.4.4.2	Heat aging	43
3.4.5	Morphology of blends	44
3.4.5.1	Light microscopy (LM) image	44
3.4.5.2	Scanning electron microscope (SEM) image	44-45
3.4.6	Thermal properties	45

3.4.6.1	The test conditions	45
3.4.6.2	Chemically treated sample preparation	46
3.4.6.3	Determination of crystalline melting (Tm)	46
3.4.6.4	Determination of degree of crystallinity	47-48
3.4.6.5	Determination of glass transition temperature (Tg)	48
3.4.7	Characterization using Fourier transform infrared spectroscopy (FTIR	48
3.4.7.1	Blend preparation	48-49
3.4.7.2	Xylene extracted sample	49
3.4.8.3	Obtaining of FTIR	49

Chapter 04

Results and discussion

4.1	Raw material characterization	50
4.1.1	Characterization of NR	50
4.1.2	Characterization of LLDPE	50-51
4.2	Blend morphology	52
4.2.1	Based on light microscope study	52-53
4.2.2	Based fracture behavior and electron microscope images (SEM)	54-57
4.3	Rheological properties and cure characteristics	57
4.3.1	Mooney viscosity	57-58
4.3.2	Extrudability of the blends	58
4.3.2.1	Dieswell	59-60
4.3.2.3	Extrudability with corners and sharp edges	64-66
4.4	Cure characteristics	67-70
4.5.1	Hardness with LLDPE loading	71-72
4.5.2	Tensile properties	72
4.5.2.1	Modulus at 300% elongation	72-73
4.5.2.2	Tensile strength with LLDPE loading	73-77
4.5.2.3	Elongation at break with LLDPE loading	77-78

4.5.4.4	Tear Strength of NR/LLDPE blends	78-79
4.6	Variation of chemical properties with composition	80
4.6.1	Variation of solvent resistance	80-81
4.6.2	Oxo-thermal ageing of NR/ LLDPE blends.	81-82
4.8	Thermal properties of the blends using DSC	83
4.8.1	Variation of crystalline melting (Tm) with LLDPE loading	83-88
4.8.2	Variation of glass transition temperature with LLDPE loading	88-89
4.8.3	Thermal behavior of reactive blends after isolation of cross linked phase	90-91
	by boiled xylene extraction	
4.9	Bound rubber phase composition - using FTIR Analysis	91-93

Chapter 05

Conclusions and future work

5.1	Conclusions	94-97
5.2	Future works	98
References	8	99-105
Appendix Appendix 01 Appendix 02		103-106 106-112

List of Abbreviation.

ABS	Acrylonitrile butadiene styrene rubber
°C	Centigrade
°C	Carbon centered radical
DCP	Dicumyl peroxide
DSC	Differential scanning calorymetry
FTIR	Furier transformed infra read spectroscopy
F	Shear force
G	Shear modulus
EPDM	Ethylene propylene diene monomer
Ι	Level of synergism
IR	Infrared radiation
IRHD	International rubber hardness
ISO	International standard organization
k _{tc}	Rate constant for combination
k _{td}	Rate constant for disproportionation
kg	Kilogram
LDPE	Low density poly ethylene
LLDPE	Linear low density poly ethylene
MAH	Maleic anhydride
MPa	Mega Pascal
mm	millimeter
MI	Initial torque
M _L	Minimum torque
$M_{\rm H}$	Maximum torque
MT	Metric tons
Ν	Degree of polymerization /Newton
ODR	Oscillating disk rheometer
O ⁰	Oxygen centered radical
Р	Property value

РР	Polypropylene
pH	$-\log_{10}[H_{3}O^{+}]$
РН	Polymer chain
Ph	Phenyl group
P°	Polymer radical
PS	Poly styrene
R	Universal gas constant
-R-	Alkyl group
Rh	Rate of cure
RO	Alkoxy group
RO°	Alkoxy radical
RRI	Rubber Research Institute
RSS	Ribbed Smoked Sheets
SG	Specific gravity
S	Sulphur
Т	Thermodynamic temperature
TDS	Technical data sheet
Tg	Glass transition temperature
Tm	Crystalline melting point
TPV	Thermoplastics vulcanizates
t ₉₀	Optimum cure time
ts ₂	Time for scorch
TMPTM	Trimethylolproanetrimethacrylate
TAC	Triallyl cynaurate
t	time
PRI	Plastic retention index
V	Total volume
v	Cross linking density
αH	α hydrogen
ΔG	Change in free energy
ΔΗ	Change in enthalpy

ix

ΔS	Change in entropy
wt%	Weight presentage
У	Shear strain
δ	Solubility parameter
χ	Flory interaction parameter
φ	Volume fraction
η`	Viscosity ratio
η	Viscosity of continuous phase
η*	Mean viscosity
Ŷ	Shear rate
λ	Youngs modulus
μm	Micro meter
1,2 BR	1,2- polybutadiene
10	Primary bonds
2°	Secondary bonds
3 ⁰	Tertiary bonds

List of Figures

Figure 2.1 Co-continuous phase morphology in binary polymer blend	10
Figure2.2 Coarse phase morphology in binary polymer blend. High viscous	11
elastomer phase remains as dispersed phase and thermoplastic remains as major	
phase.	
Figure 2.3 Structures of NR, HDPE, LDPE and LLDPE	14
Figure 2.4 schematic representation of dynamic vulcanization	16
Figure 2.5 Structure of DCP	18
Figure 2.7 H abstraction from αC	18
Figure 2.8 Addition of alkyl radicals to vinyl bond	19
Figure 2.9 Combination of same type macro radicals	20
Figure 2.10 Combination of different type macro radicals	21
Figure 2.11 Combination of methyl radicals	21
Figure 2.12 Combination of alkoxy radicals with methyl (alkyl) radicals	21
Figure 2.13 Disproportionation of macro radicals	22
Figure 2.14 Stricture of maleic anhydride (MAH)	23
Figure 2.15 Structure of 1, 2-Polybutadiene (1, 2-BR)	24
Figure 2.16 Structure of triallylcyanurate (TAC)	24
Figure 2.17 Structure of trimethylolpropane trimethacrylate (TMPTM)	24
Figure 2.18 sketch of two roll mill	26
Figure 3.1 Typical ODR graph for a vulcanization process of rubber.	35
Figure 3.2 Garvay die defined by ASTM D 2230	37
Figure 3.3 The ASTM standards for extrudate instabilities	38

Figure 3.4 Stress- strain curve for rubber -thermoplastic blend	40
Figure 3.5 Dumbbell type-1 test specimen.	40
Figure 3.6 Angle type test specimen	42
Figure 3.7 DSC thermogram showing crystalline melting and degrees of crystallinity	47
Figure 3.8 DSC thermogram showing T_g of	48
Figure 4.1 DSC thermogram of LLDPE	51
Figure 4.2. a -h Morphology of modified NR/LLDPE blends at different LLDPE	53
loadings. (a). 10 wt%, (b). 20 wt%, (c). 30 wt%0, (d). 40 wt%, (e) 50 wt%, (f).	
60 wt%, (g).70 wt%, (h) 80 wt%, LLDPE loadings. Scale 100µm =1.44", X 200	
Figure 4.3 SEM image of tensile fracture surface of 40 wt.% unmodified blend,	54
magnified x4000	
Figure 4.4 SEM image of tensile fracture of 40 wt. % LLDPE loaded modified	55
blend, magnified x4000	
Figure 4.5 After further magnifying "c" on the Figure 4.2.3. Magnifying level- \times	56
20,000 times with respect to the original sample.	
Figure 4.6 Stress- strain curve at 40 wt. % LLDPE loading	57
Figure 4.7 Variation of Mooney viscosity with LLDPE loading	58
Figure 4.8 Die swell at different LLDPE loadings and at screw speeds of 10 and 20	60
rpm.	
Figure 4.9 Appearance of surfaces at different LLDPE loadings and at screw speeds	63
of 10 and 20 rpm	
Figure 4.10 Appearance of corners of the extrudates at different LLDPE loadings and	65
at screw speeds of 10 and 20rpm	

Figure 4.11 appearance of the edges of extrudates at different LLDPE loadings and	66
at screw speeds of 10 and 20 rpm	
Figure 4.12 Termination of LLDPE macro radicals by disproportionation	69
Figure 4.13 Reaction of MAH with LLDPE macro radicals	69
Figure 4.15 Stabilization of LLDPE macro radicals by hyper conjugation of free	69
radicals on MAH	
Figure 4.16 Formation of macro radicals on LLDPE	70
Figure 4.17 Formation of macro radicals on NR	70
Figure 4.18 Variation of hardness with LLDPE loading	70
Figure 4.19 Variation of modulus at 300% elongation	73
Figure 4.20 Variation of tensile strength with LLDPE loading	74
Figure 4.21 Formation of macro radicals due to physical peptization during mixing	75
on chain NR	
Figure 4.22 Propagation reactions of oxidative degradation of NR	75-76
Figure 4.23 Variation of elongation at break with blend composition	78
Figure 4.24 Variation of tear strength with LLDPE loading	79
Figure 4.25 The variation of mass swelling with LLDPE loading	81
Figure 4.26 Impact of LLDPE loading on oxidative thermal ageing	82
Figure 4.27 Crystalline melting and degree of crystallinity of LLDPE before and	85
after crosslinking	
Figure 4.28 variation of crystalline melting point of NR/LLDPE modified	85
blends with LLDPE loading from 10 to 40 wt. %	

Figure 4.29 variation of crystalline melting point of NR/LLDPE modified blends	86
with LLDPE loading from 50 to 80 wt%	
Figure 4.30 variation of crystalline melting point of NR/LLDPE simple blends with	86
LLDPE loading from 20 to 50 wt. %	
Figure4.31. Crystalline melting temperatures of virgin LLDPE, cross linked LLDPE	87
with crosslinked 40 wt. % modified NR/LLDPE blend	
Figure 4.32 Variation of T_g with LLDPE loading in selected modified blends	89
Figure 4.34 Deviation of crystalline melting of LLDPE phase at different cross	90
linked states	
Figure 4.35 FTIR spectrum of modified blend at 40 wt. % LLDPE loading before the	91
extraction	
Figure 4.36 FTIR spectrum of modified blend at 40 wt. % LLDPE loading blend	92
after the extraction	
Figure 4.37 FTIR spectrum of un-modified blend at 40 wt. % LLDPE loading before	93
the extraction	
Figure 5.1 Formation of macro radicals.	96
Figure 5.2 Adhesion types crosslinking	97
Figure 5.3 Adhesion types crosslinking	98

xiv

List of tables

Table 3.1 The tests with relevant standards which were used to characterize NR	28
Table 3.2 The tests with relevant standards which were used to characterize LLDPE	29
Table 3.3 Basic properties of the DCP	29
Table 3.4 Basic properties of the MAH	30
Table 3.5 Basic properties of the CaCO3	30
Table 3.6 The formulae of simple and reactive blends with 100 w/w% NR compound	32
Table 4.1 Physical properties of NR	50
Table 4.2 Physical properties of LLDPE	51
Table 4.3 Dies swell of selected NR/LLDPE blends	59
Table 4.4 Cure characteristics of modified and unmodified blends at different	67
LLDPE loadings	
Table 4.5 Degree of crystallinity of LLDPE phase in modified and unmodified	84
blends at different LLDPE loading.	
Table 4.6 IR vibration peaks which are important to characterized NR and LLDPE	93

Abstract

A series of melt blended, peroxide vulcanized natural rubber (NR) and liner low density polyethylene (LLDPE) rubber-thermoplastic vulcanizate was developed using classical rubber processing equipment such as internal dispersive mixer, two-roll mill etc. Two types of NR/LLDPE thermoplastic vulcanizate were developed varying LLDPE loading from 10 to 80 wt. % at 10 wt. % loading intervals with and without co-agent namely modified and unmodified blends respectively. Dicumyl Peroxide (DCP) and Maleic anhydride (MAH) was used as crosslinking aget and co-agent. Melt blending of polymers and other additives was done in an internal dispersive mixer and curatives and co-agent were incorporated in to the blend in two-roll mill. Vulcanization was carried out using a hydraulic press at 140 \Box C temperature and 3.5 MPa pressure. Morphology, cure characteristics, physicochemical properties and extrudability of the blends were determined using respective ISO and ASTM standards. Thermal properties were determined using differential scanning calorimetry (DSC), Fourier transformation infra read (FTIR) spectroscopy was used to study bond structure. Morphological study revealed that co-continuous morphology of vulcanizates remains up to 50 wt. % LLDPE loading thus the processability with classical rubber processing equipment. However, blends with higher LLDPE loading behave like thermoplastics. LLDPE loading increases scorch time (t_{s2}) and reduces rate of cure index. An improved state of cure was observed in modified blends than that of unmodified blends at each LLDPE loading. Tensile properties were improved up to 40 wt. % LLDPE loading in comparisons to the peroxide vulcanized NR compound and then it comes to a decline. Hardness, tear resistance, resistance to thermo-oxidative degradation and resistance to organic solvents improves with LLDPE loading in both modified and unmodified blends. Further modified blends always showed improved physicochemical properties than in the unmodified blends at each LLDPE loadings. Extrudability developed up to 30-50 wt. % LLDPE loading then it declined. Thermal properties and topology of tensile fracture obtained from scanning electron microscope used to study the interfacial adhesion. Accordingly, better interfacial adhesion was "observed" in modified blends.

[Key words: rubber-thermoplastic vulcanizate, co-agent, morphology, state of cure, extrudability and interfacial adhesion]