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Abstract 

A series of melt blended, peroxide vulcanized natural rubber (NR) and liner low density 

polyethylene (LLDPE) rubber-thermoplastic vulcanizate was developed using classical rubber 

processing equipment such as internal dispersive mixer, two-roll mill etc. Two types of 

NR/LLDPE thermoplastic vulcanizate were developed varying LLDPE loading from 10 to 80 

wt. % at 10 wt. % loading intervals with and without co-agent namely modified and unmodified 

blends respectively. Dicumyl Peroxide (DCP) and Maleic anhydride (MAH) was used as 

crosslinking aget and co-agent. Melt blending of polymers and other additives was done in an 

internal dispersive mixer and curatives and co-agent were incorporated in to the blend in two-roll 

mill. Vulcanization was carried out using a hydraulic press at 140 Hi C temperature and 3.5 MPa 

pressure. Morphology, cure characteristics, physicochemical properties and extrudability of the 

blends were determined using respective ISO and ASTM standards. Thermal properties were 

determined using differential scanning calorimetry (DSC), Fourier transformation infra read 

(FTIR) spectroscopy was used to study bond structure. Morphological study revealed that 

co-continuous morphology of vulcanizates remains up to 50 wt. % LLDPE loading thus the 

processability with classical rubber processing equipment. However, blends with higher LLDPE 

loading behave like thermoplastics. LLDPE loading increases scorch time (t2) and reduces rate 

of cure index. An improved state of cure was observed in modified blends than that of 

unmodified blends at each LLDPE loading. Tensile properties were improved up to 40 wt. % 

LLDPE loading in comparisons to the peroxide vulcanized NR compound and then it comes to a 

decline. Hardness, tear resistance, resistance to thermo-oxidative degradation and resistance to 

organic solvents improves with LLDPE loading in both modified and unmodified blends. Further 

modified blends always showed improved physicochemical properties than in the unmodified 

blends at each LLDPE loadings. Extrudability developed up to 30-50 wt. % LLDPE loading then 

it declined. Thermal properties and topology of tensile fracture obtained from scanning electron 

microscope used to study the interfacial adhesion. Accordingly, better interfacial adhesion was 

"observed" in modified blends. 

[Key words: rubber-thermoplastic vulcanizate, co-agent, morphology, state of cure, extrudabi I ity 

and interfacial adhesion] 
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