EFFECT OF OZONE ON NR / EPDM BLENDS

BY

RAMESH UDAYASHANNKAR KARUNAGARAN

This thesis was submitted in partial fulfillment for the Degree of Master of Science in Polymer Science and Technology in the Faculty of Graduate Studies.

> Department of Chemistry University of Sri Jayawardenapura Sri Lanka 2007

DECLARATION BY THE CANDIDATE

The work described in this thesis was carried out by me under the supervision of Mrs. Dilhara G. Edirisinghe (Rubber Research Institute of Sri Lanka, Ratmalana) and Mr. H.N.K.KChandralal (Rubber Research Institute of Sri Lanka, Ratmalana) and report on this has not been submitted in whole or part to any University or any other Institution for another Degree / Diploma. I also certify that this thesis does not include , without acknowledgement, any materials previously submitted for a degree in any universities, and to the best of my knowledge and belief it does not contain any materials previously published , written or oral communicated by another person.

Cmo R.U.Karunagaran

26 TH OCTOBER 2007

DECLARATION OF THE SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation.

Mrs. Dilhara G. Edirisinghe

Rubber Research Institute Ratmalana.

Date: 26/10/2007 .

Dr. Laleen Karunanayake

Senior Lecture,

Department of Chemistry,

University of Sri Jayewardenepura,

Nugegoda.

Date: 29/10/2007

Jupacha hald

Mr.H.N.K.K.Chandralal

Rubber Research Institute

Ratmalana. Date : 2b - 10 - 07

CONTENTS

		Page
Ack	nowledgement	Ι
List	of Tables	III
List	of Figures	IV
Abb	reviations	VII
Abst	ract	Х
1.0	GENERAL INTRODUCTION	1
	1.1 Introduction	1
	1.2 Objective	2
	1.3 Plan of the Project Report	3
2.0	A REVIEW OF RUBBER TECHNOLOGY	4
	2.1 Structure and Properties of Natural Rubber	4
	2.2 Structure and Properties of EPDM Rubber	7
	2.3 Chemistry and Manufacturing Process of EPDM Rubber	8
	2.4 General Features of EPDM Rubber	11
	2.5 Specification of EPDM Rubber	13
	2.6 Mastication of Natural Rubber	14

3.0	A REVIEW OF OZONE ATTACK	15
	3.1 Introduction of Ozone	15
	3.2 Physical Properties of Ozone	15
	3.2.1 Solubility of ozone	15
	3.2.2 Physical Properties of ozone in detail	16
	3.3 Influence of Ozone on Natural Rubber	16
	3.3.1 Molecular reactivity of ozone	18
	3.4 Factors Influence Ozone Degradation	20
	3.4.1 Applied stress	20
	3.4.2 Effect of ozone concentration	21
	3.4.3 Dynamic condition	22
	3.4.4 Applied strain	23
	3.5 Protection From Ozone	23
	3.6 Mechanism of Anti-ozonants	25
4.0	A REVIEW OF RUBBER BLENDS	29
	4.1 Compatibility of Elastomer Blends	29
	4.2 Thermodynamic Approach	30
	4.3 Solubility Parameter Approach	30
	4.4 Glass Transition Temperature	32
	4.5 Characterization of Compatibility using Microscopy	33
	4.6 Blends of Elastomers Differing in Unsaturation	33

5.0	COMPOUNDING AND COMPOUNDING INGREDIENTS	36
	5.1 Compounding	36
	5.2 Mixing Ingredients	36
	5.2.1 Base Polymer	36
	5.2.2 Activators	37
	5.2.3 Antioxidants	38
	5.2.4 Fillers	39
	5.2.5 Oils	39
	5.2.6 Di ethylene glycol	40
	5.2.7 Accelerators	40
	5.2.8 Cross linking agents	40
	*	
6.0	VULCANIZATION AND VULCANIZATION MECHANISM	42
	6.1 Vulcanization	42
	6.2 Sulphur Vulcanization Systems	42
7.0	EXPERIMENTAL	44
	7.1 List of Chemicals Used	44
	7.2 Formulation	45
	7.3 Sequence of Addition	46
	7.4 Compounding Procedure	46

	7.5 Differential Scanning Calorimetry	47
	7.6 Determination of Mooney Viscosity	48
	7.7 Determination of Tensile Strength	49
	7.8 Determination of Hardness	51
	7.9 Determination of Tear Strength	51
	7.10 Accelerated Aging Test	52
	7.11 Rubber Deterioration – Surface Ozone Cracking	53
	7.12 Cure Characteristics	54
	7.12.1 Rheometer	54
	7.13 Functional Group Analysis	55
	7.13.1 Infra red spectroscopy	55
	7.14 Scanning Electron Microscopy	56
8.0	RESULTS AND DISCUSSION	57
	8.1 Cure Characteristic Properties	57
	8.2 Analysis on Differential Scanning Microcopy	59
	8.3 Analysis of Physical Properties	63
	8.4 Results and Analysis of Ozone Test	69
	8.4.1 Analysis of ozone effect using scanning electron microscopy	73
	8.5 Analysis of Mooney Viscosity	83
	8.6 Analysis of Fourier Transform Infra Red	84

9.0	FURTHER ANALYSIS OF THE 60/40 NR / EPDM BLEND		86
	9.1	Analysis of physical properties of modified compound	87
	9.2	Analysis of results and conclusion	87
10.0	CON	CLUSSION	89
11.0	SUG	GESTIONS FOR FURTHER ANALYSIS	90
12.0	REFERENCES		91

ACKNOWLEDGEMENTS

As a Post Graduate student I feel really happy to submit this thesis, which is a result of combined team work of a set of people. I like to thank the academic board of University of Sri Jayawardenepura and Dr Lalin karunanayeka for conducting this course and giving us the opportunity to explore ourselves and come out with new concepts to the Rubber Industry.

I was so fortunate to do my research under the guidance of my supervisors, without their support this research will only be a dream. I really don't have words to express the effort they took to organize the ozone and the SEM tests in Sri Lanka.

I also thank the Management of the Rubber Research Institute for allowing me to use their laboratory for milling and testing, and their staff for the kind cooperation extended during my stay there. I cannot forget the Librarian of the Rubber Research Institute for organizing me the relevant books.

I really appreciate the General Manager of Richard Pieris Export Ltd,Ekala, for providing the necessary raw rubber and the rubber chemicals for my research and the General Manager of Jafferjee Brothers Ltd, for providing me the EPDM rubber. I am really thankful to the General Manager and his technical staff, of D.Samson Manufacturing Co Ltd, Mahara, for the effort they took to do the ozone resistant test.

I remember with gratitude the support extended by the technical staff of the University of Moratuwa and the University of Sri Jayawardenapura to do the Rheographs and the IR tests respectively, and the Associate Motorways Ltd also did the Rheographs for me. I also thank the Management and the Staff of the Electron Microscopy Unit of the Medical Research Institute, for allowing me to do the SEM test at their laboratory.

Ι

I really appreciate the service they provide to students of our nature to do our research.

I cannot forget the help extended by my colleague in France, for helping me to get the DSC test done. I thank the Management of Palla & Company for allowing me to attend the relevant Institutions, even during extremely tough production schedules.

Finally I like to thank my wife and my family members for the encouragement they extended to me to submit a complete project report for the benefit of the Rubber Industry.

LIST OF TABLES		Page
Table1	Cure Site – Termonomers in Ethylene Propylene Elastomers	09
Table 2	General Features of Ethylene Propylene Elastomers	11
Table 3	Solubility of Ozone in Water	15
Table 4	Physical Properties of Ozone	16
Table 5	Cross Link Densities in 60: 40 NR: EPDM Blends	35
Table 6	List of Sulphur Vulcanization Systems	42
Table 7	Description of Rubber Chemicals Used	44
Table 8	List of Formulations Used as Samples	45
Table 9	Analysis of Cure Characteristics of Rubber Compounds	57
Table 10	Comparison of DSC Results of Samples RK01 – RK 05	59
Table 11	Results and Comparison of Physical Properties	
	of Aged and Unaged Samples.	63
Table 12	Observations of Samples Exposed to Ozone	69
Table 13	Results of Mooney Viscosity	83
Table 14	Physical Properties of RK 11, RK 12 and RK 13	87

LIST OF FIGURES Pag		
Fig 1	Structure of Cis 1,4 Polyisoprene	04
Fig 2.	Structure of EPDM containing ENB	08
Fig 3	Attack of Ozone on Double Bond to Form Scission Products	17
Fig 4	Resonance Structure of Ozone	18
Fig 5	Dipolor Cyclo Addition of Ozone on Unsaturated Bonds	18
Fig 6	Criegee Mechanism	19
Fig 7	Relative Transmission for Rubber Extended 121%	
	Exposed to Ozone	22
Fig 8	Relative Trans mission of Rubber for two Different Elongations	23
Fig 9	Blooming of Different Paraffin Waxes at 22°C in NR Vulcanizate	es
	Cured with 1.0 pphr DCP	26
Fig 10	The Modulus Dependence of rate of Docosane Blooming at	
	22°C, at Different Modulus	27
Fig 11	The Modulus Dependence of rate of Docosane Blooming at	
	22°C, at Different DCP Rates	28
Fig 12	Structure of Ralox – LC	38
Fig 13	Diagram of Differential Scanning Calorimeter	48
Fig 14	Diagram of a Test Piece used for Tear Testing	52
Fig 15	Description of a Cure Curve	54
Fig 16	Comparison of Cure Times of Samples RK 01 to RK 10	57
Fig 17	Comparison of Scorch Time of Samples RK 01 to RK 10	58
Fig 18	DSC Graph of Sample RK 01	60

Fig 19	DSC Graph of Sample RK 02	60
Fig 20	DSC Graph of Sample RK 03	61
Fig 21	DSC Graph of Sample RK 04	61
Fig 22	DSC Graph of Sample RK 05	62
Fig 23	Comparison of M100% of Aged and Unaged Samples of RK 01 to	
	RK 10	64
Fig 24	Comparison of M300% of Aged and Unaged Samples of RK 01 to	
	RK 10	65
Fig 25	Comparison of Tensile Strength of Aged and Unaged Samples of	
	RK 01 to RK 10	65
Fig 26	Comparison of EB% of Aged and Unaged Samples of RK 01 to	
	RK 10	66
Fig 27	Comparison of Tear Strength of Aged and Unaged Samples of	
	RK 01 to RK 10	67
Fig 28	Comparison of Hardness of Aged and Unaged Samples of RK 01	
	to RK 10	68
Fig 29	Photographs of RK04, RK05 and RK 03 Exposed to Ozone for	
	150	70
Fig 30	Photographs of RK01, RK08, RK09 and RK 10 Exposed to	
	Ozone for 150 Hrs	70
Fig 31	Photographs of RK03, RK06, RK 02, RK 07 and RK 01	
	Exposed to Ozone for 150 Hrs	71

Fig 32 SEM Micrograph of RK 01 (100% NR) Exposed to 50ppm Ozo		e
	for 150 Hours (350 magnification)	73
Fig 33	SEM Micrograph of RK 01 (100% NR) Exposed to 50ppm Ozon	e
	for 150 Hours (1000 magnification)	73
Fig 34	SEM Micrograph of RK 02 (80:20 NR: EPDM) Exposed to 50pp	m
	Ozone for 150 Hours (350 magnification)	74
Fig 35	SEM Micrograph of RK 02 (80:20 NR: EPDM) Exposed to	
	50ppm Ozone for 150 Hours (1000 magnification)	75
Fig 36	SEM Micrograph of RK 02 (80:20 NR: EPDM) not Exposed to	
	Ozone (350 magnification)	76
Fig 37	SEM Micrograph of RK 03 (60:40 NR: EPDM) Exposed to	
	50ppm Ozone for 150 Hours (350 magnification)	77
Fig 38	SEM Micrograph of RK 03 (60:40 NR: EPDM) Exposed to	
	50ppm Ozone for 150 Hours (1000 magnification)	77
Fig 39	SEM Micrograph of RK 03 (60:40 NR: EPDM) not Exposed	
	to Ozone (1000 magnification)	78
Fig 40	SEM Micrograph of RK 03 (60:40 NR: EPDM) not Exposed	
	to Ozone (350 magnification)	79
Fig 41	SEM Micrograph of RK 04 (40:60 NR: EPDM) Exposed to	
	50ppm Ozone for 150 Hours (350 magnification)	80
Fig 42	SEM Micrograph of RK 05 (20:80 NR: EPDM) Exposed to	
	50ppm Ozone for 150 Hours (350 magnification)	80

Fig 43	SEM Micrograph of RK 06 (100 % EPDM) Exposed to 50ppm	
	Ozone for 150 Hours (750 magnification)	81
Fig 44	SEM Micrograph of RK 06 (100 % EPDM) Exposed to 50ppm	
a ta barila	Ozone for 150 Hours (750 magnification)	82
Fig 45	SEM Micrograph of RK 06 (100 % EPDM) Exposed to 50ppm	
	Ozone for 150 Hours (750 magnification)	82
Fig 46	FTIR Graph of RK 02	84
Fig 47	FTIR Graph of RK 01	84

ABBREVIATIONS

а	- Flaw size
С	- Centigrade
CV	- Conventional vulcanization
d	- Thickness
DCPD	- Dicyclo pentadiene
DEG	- Di ethylene glycol
<u>dH</u> dt	- Differential heat
dt DSC	- Differential scanning caloremetry
E	- Young's modulus
EB	- Elongation at Break
ENB	- Ethylene norbornene
EPDM	- Ethylene propylene diene ter polymer
EPM	- Ethylene propylene Monomer
EV	- Efficient vulcanization
F	- Maximum force
G	- Specific gravity
Gc	- Fracture energy
Gm	- Gibbs free energy of mixing
Не	- Helium
Hm	- Enthalpy of mixing
IR	- Infra red
J	- Joules

VII

Kg	- Kilogram
LCB	- Long chain branching
Μ	- Mass
m	- Meter
MBT	- 2- Mercapto benzothiazole
MBTS -	- Di benzothiazyl di sulfide
mg	- Milli gram
mm	- Milli meter
MPa	- Mega pascal
Mw	- Molecular weight
Ne	- Neon
Ni	- No of molecules of i th component
nm	- Nano meter
NR	- Natural rubber
O ₂	- Oxygen
O ₃	- Ozone
Oc	- Tensile stress
OsO4	- Osmium tetroxide
%	- Percentage
p.p.h.r	- Parts per hundred rubber
PE	- Poly ethylene
РР	- Poly propylene
ppb	- Parts per billion

VIII

ppm	- Parts per million
R	- Universal gas constant
RSS	- Ribbed smoke sheet
SBR	- Styrene butadiene rubber
SEM	- Scanning electron microscopy
Sm	- Entropy of mixing
TEM	- Transmission electron microscopy
Tg	- Glass transition temperature
TiO ₂	- Titanium di oxide
TMTM	- Tetra methyl thiuram mono sulphite
TQM	- 2,2,4, Trimethyl 1,2 dihydro quinolene
Ts	- Tear strength
TSR	- Technically specified rubber
UV	- Ultra violet
V	- Total volume
V ₂	- Saybolt viscosity
VGC	- Viscosity gravity constant
Xi	- Mole Fraction of i th component
χ	- Interaction parameter
δ	- Solubility parameter
ρ	- Density
Ø	- Volume fraction

ABSTRACT

Natural Rubber is considered to be a superior rubber compaired to synthetic counterparts, as far as physical properties of rubber compounds are concerned. But it fails like other unsaturated elastomers when it is subjected to the effect of ozone. The idea to protect the NR with antiozonants such as waxes and IPPD failed when exposed to 50 ppm ozone concentration. As the objective of the project was to formulate a rubber compound which possees both ozone resistance and physical properties, EPDM was blended with NR.

Introduction of EPDM rubber to replacing NR in the composition from 20% to 80% performed increasing ozone resistance. The blend of 60/40 NR / EPDM blend was found to be a reasonable blend which exhibits both good physical properties and ozone resistance.

The 60/40 NR/ EPDM blend made by milling EPDM with 6 pphr of petroleum jelly as the processing aid, before blending with NR gave good results in Tensile and Tear strenghs.

The degradation product formed by the attack on rubber by ozone was seen as frost on the surface of these compounds in the same extent. The IR analysis suggested this frost to be the Zwitterions, which is a decomposed product of ozonide with water.

The SEM and DSC results suggested that the morphology of these two blends is co-continuous. The blend of 60/40 NR/ EPDM and 40/60 NR / EPDM can be considered as a conversion point, where the effect of ozone becomes less significant at 150 hours ozone exposure. The SEM of 40/60 NR / EPDM suggest that the two blends in the co continuous state, the NR in this will be more masked by the EPDM for the ozone effect.

Х

Observation in the SEM results indicated that the ozone attack on the rubber caused staining NR phase and eventually brightened the NR phase, thereby making it easier to distinguish the two phases in the blend by using SEM.