Synthesis of Novel Resin from Post Consumer PET Waste and Methyl Ricinoleate for Two Pack Surface Coating

Bin

Dimbulwitiyage Aruna Priyankara

Thesis Submitted to the University of Sri Jayewardenepura for the Award of the Master of Science in Polymer Science and Technology 2016

i

DECLARATION

The work described in this thesis was carried out by me under the supervision of Dr.M.A.B. Prashantha, Senior lecturer, Department of Chemistry, University of Sri Jayewardenepura and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

D. Aruna Priyankara

13 06 2016

Date of submission

Registration no: GS/MSc/PST/4191/10 Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka.

CERTIFICATION

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Sun 2

Dr. M.A.B. Prashantha

(Research Supervisor)

B.Sc (Hon's) in Chemistry (Sri Lanka), PhD (Sri Lanka)

Senior Lecturer,

Department of Chemistry,

University of Sri Jayewardenepura,

Gangodawila,

Nugegoda,

Sri Lanka.

LIST OF ABBREVIATIONS

PET / PETE	Polyethylene terephthalate
LDPE / PELD	Low density polyethylene
LLDP / LLD	Linear low density polyethylene
HDPE / PEHD	High density polyethylene
PVC	Poly vinyl chloride
PP	Polypropylene
PS	Polystyrene
РА	Polyamide
PBT	Polybutylene terepthalate
PPS	Polyphenylene sulfide
РРО	Polyphenylene oxide
PSU	Polysulphone
ABS	Acrylonitrile butadiene styrene
SPI	Society of plastic industries
PUR	Polyurethane
РММА	Poly (methyl methacrylate)
MSW	Municipal solid waste
EG	Ethylene glycol
HDI	Hexamethylene Diisocyanate
TDI	Toluene Diisocyanate
MDI	Diphenylmethane4, 4'Diisocyanate
IPDI	Isophorone Diisocyanate
BHET	Bis (2-hydroxyethyl) terepthalate

iv

ASTM	American society of testing and materials
FTIR	Fourier transformed infra-red
DSC	Differential scanning calorimetry
МА	Maleic anhydride
TPA	Terepthalic acid
DMT	Dimethyl terepthalat
TPR	Thermoplastic polyester resin
AARG	Annual average rate growth
NaOH	Sodium hydroxide
КОН	Potassium hydroxide
CO ₂	Carbon dioxide
g	Gram
h	Hour
kg m ⁻³	Kilograms per cubic meter
mol dm ⁻³	Moles per cubic decimeter
ml	Milliliter
rpm	Rounds per minute
g / mol	Gram per mole
g / ml	Gram per milliliter
k/Pa	Kilo pascal
KJ / mol	Kilojoule per mole
J / (kg.K)	Joule per kilogram Kelvin
mPa.s	Millipascal second

Million tonnes / Metric tonnes Centigrade

mt

°C

TABLE OF CONTENTS

Title page	i
Declaration	ii
Certification	iii
List of abbreviation	iv-vi
List of tables	xi-xii
List of figures	xiii-xv
Acknowledgement	
Abstract	xvii

CHAPTER 1 – INTRODUCTION

1.1	Plastic as a new material of modern civilization1-2
1.2	Commodity plastic and engineering plastics
1.3	World plastics production (1950-2012)4
1.4	The future of plastic5
1.5	Plastic pollution and harmful effects
	1.5.1Plastic waste as land filling and incineration material
1.6	The demand and plastic usage in worldwide7-8
1.7.	PET recycling8
	1.7.1 Mechanical recycling8-9
	1.7.2. Chemical recycling
	1.7.2.1 Glycosis9-11
	1.7.2.2 Methanolysis12

1.7.2.3 Hydrolysis12
1.8 Fatty oils as a source of renewable raw materials
1.9 Industrial applications of triglyceride oils16
1.10 Castor oil plant16-17
1.10.1 Castor seeds17
1.11 Castor oil
1.12 Castor oil properties
1.13 Refining of castor oil19
1.14 Chemistry of castor oil20
1.15 Curing action of isocyanate21
1.15.1 Curing action of hexamethylene diisocyanate22
1.16 Aim and Objectives of the research
CHAPTER 2 – LITERATURE REVIEW
2.1Production of polyethylene terephthalate23-24
2.2 General properties of PET24
2.3Manufacturing of PET bottles25
2.3.1 One step method25
2.3.2 Two step method25
2.4 Chemical recycling of PET via glycolysis26
2.4.1 Many processes of glycolysis
2.5 Importance of catalyst for glycolysis process
2.6 Basic components for transesterification of castor oil

2.7 Preparation of unsaturated polyester resins	30
2.8 Coating application of two pack adhesive system	31
CHAPTER 3 - EXPERIMENTAL	
3.1 Materials, Instruments and Reagents	32
3.2 Flow of the experimental work	33-34
3.3 Extraction of castor oil using n-hexane	35
3.4 Determination of moisture content and oil content of the seeds	35-36
3.5 Characterization of the extracted castor oil	36
3.5.1 Determination of acid value	36-37
3.5.2 Determination of specific gravity	37
3.6 Transesterification of castor oil to methyl ricinoleate	37-38
3.7 Preparation of Zinc acetate	39
3.8 Glycolysis of PET in to BHET	39-40
3.9 Characterization of BHET	40
3.9.1 FTIR analysis of BHET	.40-41
3.9.2 DSC analysis	41
3.10 Synthesis of novel polyester resin	.41-45
3.11 Acid value determination during the polyesterification	45
3.12 FTIR spectra for the novel resins	45
3.13 Preparation of test specimens	45
3.14 Application of coating system	46
3.15 Film property evaluation	46

3.15.1 Determination of drying time	46
3.15.2 Determination of adhesion	46-47
3.15.3 Determination of resistance properties	47
CHAPTER 4 – RESULTS AND DISCUSSION	
4.1 Moisture content and oil yield of castor seeds	48
4.2 Characterization of the extracted castor oil	48-49
4.2.1 Physical and chemical properties of castor oil	49
4.2.2 FTIR analysis	49-51
4.3 Evaluation of transesterification process	51-53
4.4 Experimental data on glycolyzed PET	53-54
4.5 Characterization of BHET	55
4.5.1 FTIR spectrum analysis	55-56
4.5.2 DSC thermogram	56-57
4.6 Acid value variation during the polyesterification	57-60
4.7 Kinetics of polyesterification	60-67
4.8 FTIR spectra of polyester resins	67-70
4.9 Film characterization	70
4.9.1 Drying time properties of film	71-73
4.9.2 Adhesion properties of film	73-74
4.9.3 Chemical resistance properties of film	74-79
CHAPTER 5 – CONCLUSION	80
CHAPTER 6 – REFERENCE	.81-86

LIST OF TABLES

Table 1.1: PET demand and usage worldwide
Table 1.2: Some fatty acids in natural oils
Table 1.3: Fatty acid composition of various oils
Table 1.4: Physical and chemical properties of triglyceride oils15
Table 1.5: Production volume of castor oil by major producers
Table 1.6: Characteristics of castor oil in different situation
Table 2.1: Mechanical and physical properties of PET
Table 2.2: Catalysts studies for PET glycolysis
Table 3.1: Reaction masses of glycolysis substance
Table 3.2: Reaction masses of resin synthesis
Table 3.3: amount of chain stopper increase with resin types
Table 4.1: Moisture and oil yield of castor seeds
Table 4.2: Physical and chemical properties of extracted castor oil49
Table 4.3: BHET yield content
Table 4.4: Acid value determination at different time
Table 4.5: Extent of reaction changes with resin types
Table 4.6: a and b values for integrate equation61
Table 4.7: Drying time of TPR ₄ and TPR ₅ films71
Table 4.8: Adhesion property of film73
Table 4.9: Acid resistance properties of film74
Table 4.10: Alkali resistance properties of film
Table 4.11: Salt resistance properties of film

Table 4.12: Solvent resistance properties of film	7
Table 4.13: Water resistance properties of film	3

LIST OF FIGURES

Figure 1.1: World production of plastic materials by region2
Figure 1.2: Plastic identification codes
Figure 1.3: World plastic production 1950-20124
Figure 1.4: Plastic waste disposal since 1960 to 20086
Figure 1.5: CO ₂ increasing for global warming7
Figure 1.6: Mechanism of PET glycolysis10
Figure 1.7: Chemical structure of alkyd with pthalic anhydride11
Figure 1.8: Chemical structure of alkyd with pthalic anhydride11
Figure 1.9: Life cycle of polymers based on triglyceride oils13
Figure 1.10: Castor oil plant17
Figure 1.11: The castor seeds17
Figure 1.12: Chemical structure for ricinoleic acid20
Figure 1.13: Reaction of the isocyanate groups21
Figure 1.14: Structure of HDI22
Figure 1.15: Structures of some diisocyanates
Figure 2.1: Polyesterification reaction of the PET23
Figure 2.2: Polycondensation reaction of the PET24
Figure 3.1: Flow of the experimental work
Figure 3.2: Castor oil extraction from soxhlet operation
Figure 3.3: Methyl ricinoleate from castor oil
Figure 3.4: Tranesesterification of castor oil
Figure 3.5: Experimental setup for glycolysis process

Figure 3.6: Experimental setup for polyesterification reaction	41
Figure 3.7: Assume polymer products for TPR5 resin	43-44
Figure 4.1: Extracted castor oil	49
Figure 4.2: FTIR spectrum of extracted castor oil	50
Figure 4.3: IR spectrum of castor oil (As a reference diagram)	50
Figure 4.4: Content of methyl ricinoleate	51
Figure 4.5: FTIR spectrum of Methyl ricinoleate	52
Figure 4.6: IR spectrum of methyl ricinoleate	53
Figure 4.7: Wet BHET crystals	53
Figure 4.8: FTIR spectrum of BHET monomer	55
Figure 4.9: DSC Thermogram of glycolyzed PET	56
Figure 4.10: DSC curves of controlled BHET monomer	57
Figure 4.11: Acid value changes with time	
Figure 4.12: Thermoplastic polyester resins	59
Figure 4.13: Extent of reaction changed with OH/COOH ratio	
Figure 4.14: Plot of y vs time for TPR4 resin at equation 1	63
Figure 4.15: Plot of y vs time for TPR5 resin at equation 1	63
Figure 4.16: Plot of y vs time for TPR4 and TPR5 at equation 2	64
Figure 4.17: Plot of y vs time for TPR4 resin at equation 3	66
Figure 4.18: Plot of y vs time for TPR5 resin at equation 3	66
Figure 4.19: FTIR Spectrum of TPR1	67
Figure 4.20: FTIR spectrum of TPR2	68
Figure 4.21: FTIR spectrum of TPR3	68
Figure 4.22: FTIR spectrum of TPR4	69

Figure 4.23: FTIR spectrum of TPR5	70
Figure 4.24: Five different coated substrates	
Figure 4.25: Chemical resistance properties of coated film	79

AKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to research supervisor Dr.M.A.B.Prashantha, Senior Lecturer of the Department of Chemistry, University of Sri Jayewardenepura, Sri Lanka for the encouragement, guidance and support extended to me at all times during the research work. His interest, enthusiasm and commitment were always a source of inspiration to me.

I am extremely grateful to former Dean of the Faculty of Graduate Studies, Prof. P.M. Jayaweera, Head of the Department of Chemistry, for providing facilities to undertake this research project at the Polymer Research Laboratory of the University of Sri Jayewardenepura, Sri Lanka. My sincere thanks express to Dr.Manoj Chinthaka, Senior Lecturer of the Department of Chemistry, University of Sri Jayewardenepura, Sri Lanka for providing facility to undertake the FTIR testing analysis. Even, I am grateful to thanks Dr. Jagath Premachandra, Senior Lecturer of the Department of Chemical and Process Engineering, University of Moratuwa, Sri Lanka, for providing facility to undertake the DSC thermo analysis of my samples. My grateful thank goes to Mr. Sisira, Mr. Suranga and Mrs. Ramya, the staff of the Polymer Research Laboratory for their assistance and friendly cooperation.

A special thanks to my parents, brothers and sisters for the encouragement and support given to me. Even, I would like to express appreciation to my beloved wife who has supported me throughout entire process. At the end, I thank all those who helped me directly or indirectly in the study.

ABSTRACT

The problem of plastic waste is now a global one and waste PET represents one of the most successful examples of polymer plastic recycling. The intermediate product was BHET, which obtained from the glycolysis process and highest yield of BHET, 66 % was obtained at temperature 198 °C after 90 minutes reflux in the presence of zinc catalyst while stirring continued at100 r.p.m speed. The castor oil was extracted by solvent extraction and percentage oil content of castor seeds was found to be 31.34 % of the total weight of 210 g. The castor oil was transesterified into methyl ricinoleate by methanol with sodium methoxide as catalyst. The BHET was readily polyesterified with maleic anhydride and methyl ricinoleate to obtain the polyester resin in the absence of acid catalyst. The reaction vessel was heated at temperature 135°C for 150 minutes while continues stirring. At 135°C, the kinetics plots were demonstrated that the first order reaction due to linearity. Polyester resins were formulated as two pack coating application which reacted with HDI as cross linking agent. The mixed compositions were coated on different surfaces such as glass, rubber, plastic, metal and wood and performance of the film has been evaluated accordingly.