The Spatial Model for Water Quality Changes in Upper Stream of the Polgolla Reservoir Catchment

By

EG Mangala Jayarathne

MSc

2016

The Spatial Model for Water Quality Changes in Upper Stream of the Polgolla Reservoir Catchment

By

EG Mangala Jayarathne

Thesis Submitted to the Faculty of Graduate Studies University of Sri Jayewardenepura for the Partial Fulfillment of Master of Science Degree in GIS and Remote Sensing on 20th March 2016

DECLARATION OF THE CANDIDATE

I do hereby declare that work described in this thesis was carried out by me under the supervision of Prof. (Mr) G.M. Bandaranayake and Mr. Prabath Malavige and report on this thesis has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

i

Date 2016/08/20

E.G.M.Jayarathne. No 119, Ketawala, Inguruwaththa,

Mawathagama.

Alf

ABBREVIATION

PRC	- Polgolla Reservoir Catchment
GIS	- Geographical Information System
GPS	- Global Portioning System
IDW	- Invers Distance Waited
pН	- Potential of Hydrogen
EC	- Electrical Conductivity
DO	- Dissolved Oxygen
ESRI	- Environmental Systems Research Institute
WHO	- World Health Organization
INWQS	- Interim National Water Quality Standard
IT	- Information Technology
UN	- United Nation
MASL	- Mahaweli Authority of Sri Lanka
EFCD	- Environment and Forest Conservation Division
NWSDB	- National Water Sappy and Drainage Bode
DoM	- Department of Meteorology
DEM	- Digital Elevation Model
TIN	- Triangular Irregular Network
DSD	- Divisional Secretariat Division
GND	- Grama Niladhari Division
WQ	- Water Quality
ICRISAT	- International Crops Research Institute for the Semi-Arid Tropics
BOD	- Biological Oxygen Demand
IOC	- Inorganic Chemical
KY	- Kandy
NE	- Nuwara Eliya

ACKNOWLEGEMENT

I express my deepest gratitude and sincerest thanks to my Prof. (Mr.) R.M.K. Rathnayake, coordinate of the GIS and Remote Sensing Degree Program, Department of Geography for providing facilities for me to carry out this research project successfully.

I offer my special thanks to supervisors, Prof. (Mr.) G.M.Bandaranayeke and Mr. Prabath Malavige for their encouragement, excellent guidance and valuable advice throughout my research to complete this difficult task successfully.

My Hearty thanks to Prof. (Mrs.) Sunethra Thennakoon, Head of the Department. As well, my special thanks to academic staff of Department of Geography, University of Sri Jayawardanepura

I offer my special thanks to Mr. A.M.K.B. Attanayake, Director of the Environment and forest Conservation Division, Mahaweli Authority of Sri Lanka. In addition my hearty thanks for staff of Environment and forest Conservation Divition and academic staff and non-academic staff of Department of Geography, University of Sri Jayawardanepura.

My hearty thanks to Chamira, Dihan, Madawa, Wasantha, Adikari and Upali my friends for their valuable support. At last, I take this opportunity to express my gratitude to my loving wife Dhanu, my parents for their endless support, time and moral encouragement given to me throughout this study.

Chapter Structure

Declaration of Candidate	i
Abbreviation	ii
Acknowledgements	iii
Chapter Structure	iv - vi
List of Tables	vii
List of Figures	viii- xi
Abstract	xi
1.INTRODUCTION	
1.1 Background of the study	1
1.2. Research Problems	2
1.3. Objective	3
1.4 Significance of the Study	3
2. LITERATURE REVIEW	
2.1 Introduction of Hydrology	5
2.2 Introduction of Catchment	7
2.3 Important of water Resources	9
2.4 Water Quality Parameters	10
2.4.1 Electric Conductivity	10
2.4.2 Potential of Hydrogen (pH)	11
2.4.3 Dissolve Oxygen (DO)	12
2.4.4 Ammonia	13
2.4.5 Phosphate	13
2.4.6 Nitrate	14
2.4.7 Total Hardness	14
2.4.8 Total Iron	15

2.5 Previous Water Quality Studies	15
2.6 GIS Approach for Water Quality	19
2.7 GIS Related for Water Quality Studies	22
3. METHODOLOGY	
3.1 Description of the Study Area	24
3.1.1 Physical Information	24
3.1.2 Socio Economic Information	26
3.2 Sampling Site	27
3.3 Data and Data Collection	27
3.4 Data Preparation	27
3.4.1 Attribute Data	28
3.4.1.1 Water Quality Data	28
3.4.1.2 Rainfall Data	32
3.4.1.3 Population Data	34
3.4.2 Spatial Data	34
3.4.2.1 Elevation data for delineate watershed	37
3.2.2.2 Land Use Data	45
2.4.2.3. Administrative data	47
3.4.3 Geodatabase	47
3.5 Model Builder	48
3.6 Method of Analysis	50
3.6.1 Invers Distance Waited (IDW) analyst	50
3.6.2 Raster Overlay Analyst	52
3.7 Limitation	53

4. DATA ANALYSIS, RESULT AND DISCUSSION	
4.1 Data Analyzing	54
4.1.1. Preparation of layers	55
4.1.2 Invers Distance Waited (IDW) Analyst	59
4.2 IDW analyst Result of chemical properties in PRC	64
4.3. Spatial Weighted Overlay Analysis Model for PRC	84
5. CONCLUSION AND RECOMMENDATION	
5.1 Conclusion	93
5.2 Recommendation	93
REFERENCES	94
APPENDICES	99

List of Table

Chapter Four	
4.1Summery of data layers	57
4.2 Mean Value of Chemical Parameters in PRC during sampling periods	
The range is given in the parenthesis	67
4.3 Weighted and Ranking Assigned for Raster Layers	84

List of Figures

Chapter Two

2.1 Hydrology Cycle	7
2.2 Model of River Catchment	8
2.3 World water Distribution	9
2.4 Range of pH Values	12

Chapter Three

3.1 Study area map	25
3.2 Sampling Site of the Study area	30
3.3 Current situation of sampling sites in PRC	31
3.4 Location of rainfall gauging station	32
3.5 Population density map of study area	35
3.6 Real worlds with vector data	36
3.7 Methodology of watershed analysis	38
3.8 Raster and vector data	39
3.9 Raster and vector data	44
3.10 Flow Direction	44
3.11 Flow Accumulation	44
3.12 Con map	44
3.13 Stream Link	45
3.14 Stream Link	45
3.15 Land use pattern of study area	46
3.16 Types of Geodatabase	47
3.17 Watershed Delineation Model	49
3.18 Methodologies for Analysis	51

Chapter Four

4.1 Opening ArcGIS	55
4.2 File Geodatabase	56
4.3 Makin Model	57
4.4 Step of model parameters	58
4.5 Feature to point Connection	59
4.6 Output raster dialog box	60
4.7 IDW Dialog box	61
4.8 Output Raster layer	61
4.9 Clipping model parameter dialog box	62
4.10 Clipping model parameter dialog box	63
4.11 IDW analysts Model	63
4.12 Temporal And Spatial Variance of pH Values in PRC	65
4.13 Spatial Variance of pH Values in PRC during the Study Period	66
4.14 Temporal Variance of EC Values in PRC during the Study Period	68
4.15 Spatial Variance of Electrical Conductivity Values in PRC	69
4.16 Temporal and Spatial Variance of Dissolved Oxygen values in PRC	71
4.17 Spatial Variance of Dissolved Oxygen values in PRC	.72
4.18 Temporal and Spatial Variance of Nitrate Values in PRC	73
4.19 Spatial Variance of Nitrate values in PRC during the Study Period	74
4.20 Temporal and Spatial Variance of Ammonia values in PRC	76
4.21 Spatial Variance of Ammonia Values in PRC during the Study Period	77
4.22 Temporal and Spatial Variance of Phosphate values in PRC	78
4.23 Spatial Variance of Phosphate values in PRC during the Study Period	79
4.24 Temporal and Spatial Variance of Total Hardness values in PRC	80
4.25 Spatial Variance of Total Hardness values in PRC	81
4.26 Temporal and Spatial Variance of Iron values in PRC	82
4.27 Spatial Variance of Iron values in PRC during the Study Period	83
4.28 Reclassify window	85
4.29 Reclassify layers of study area	86

88
89
90

A Spatial Model for Water Quality Changes in Upper Stream of the Polgolla Reservoir Catchment

E.G.M Jayarathne

ABSTRACT

Polgolla Reservoir Catchment (PRC) is distributed in the Upper Mahaweli River Basin, Central Province in Sri Lanka. Such catchments in Sri Lanka is being polluted due to various aspects namely, rapid urbanization, higher growth of population, unplanned industrialization, unauthorized, utilization of fertilizer. The main objective of this study was to determine the plausible and complex of water Quality changes in different areas along the main stream of the Polgolla Reservoir Catchment using Geospatial technology. Developing of a Geospatial model to resolve the changes in water of streams using water quality parameters is another objective. The study identified polluted areas in the sub catchments. The study was carried out in the period of January to December 2013. The water quality data (pH, Electrical Conductivity, Dissolved Oxygen, Nitrate, Ammonia, Phosphate, Total Hardness and Total Iron) were collected eleven sites in Upper stream of PRC. The qualitative data collected was analyzed using IDW and weighted overlay tools using Arc GIS model builder.

The spatial variation maps of water quality parameters, Land Use, Population, Rainfall, were prepared using ArcGIS spatial analysis. These maps were weighted overlay through the spatial model, Mada Ela Sub catchment was recoded as high risk water quality changes in the PRC.

Key words- PRC, Water quality, Spatial, Stream, GIS

1. INTRODUCTION

1.1 Background of the study

Water is vital for all known forms of Life. It covers 71% of the Earth's surface. The major source for discard the Garbage in the Worlds is Water Body. In Sri Lanka also can be seen this situation. Mainly there are hundred and three main river basins can be identified around this Island. Mahaweli River is the most influential surface water body in there. That has significantly contributed to shape the economy, society and environment in Sri Lanka. The river basin covers 10,670 Km² area and mean annual flow of the Mahaweli River are approximately 8.3 billion m³ (Gauging records 1950– 1977 at Manampitiya). Fresh water has become a scarce commodity due to over exploitation and pollution of water. The possibility of contamination of river water is due to the mixing of toxic chemicals, fertilizers and improper disposal of liquid wastes from the industries. In the absence of appropriate waste management strategies, many human activities and their by-products have the potential to pollute surface and subsurface water. Acute short fall of monsoon rains, poor watershed management, lavish use of water for domestic and agricultural purposes have led to the over exploitation of the surface water sources especially from the river bodies. On the other hand, surface water bodies become the dumping source for industrial effluent and domestic wastes. As a result, the naturally existing dynamic equilibrium among the environmental segments get affected leading to the state of polluted rivers. Hence monitoring of surface water quality has become Indispensable. Surface water quality depends on various parameters such as Potential of Hydrogen (pH), Electrical Conductivity (EC), Dissolved Oxygen (DO), and Total Hardness, Ammonia, Nitrate, Phosphate and Iron.

This study attempts to map the spatial variation of surface water quality parameters in Polgolla Reservoir Catchment of Upper Mahaweli River Basin, Central Province in Sri Lanka Using Geographical Information System (GIS) and Mathematical analysis. GIS is an effective tool for water quality mapping and essential for monitoring the environmental change detection. The water samples will be collected from 11 Locations in the study Area. The physiochemical parameters are namely pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Total hardness, Ammonia etc.

This study attempts to map the spatial variation of surface water quality parameters in Polgolla Reservoir Catchment of Upper Mahaweli River Basin, Central Province in Sri Lanka. Geographic Information System (GIS) is an effective tool for capture, store, manipulate, analyze, manage, and present all type of spatial or geographical data (ArcGIS, ESRI). In ArcGIS there is a special tool for hydrology analysis and another tools and extension are available for analysis with ArcGIS model. Therefore this tool directly can be used for water quality mapping and essential for monitoring the environmental change detection. Finally Geospatial analysis Methods will be used to assess the existing condition of surface water quality and the contaminated areas identified for further monitoring and management.

1.2. Research Problems

Currently Rapid Population growth, urbanization, industrialization and unplanned land use Pattern are increasing rapidly in Mahaweli river catchment. As a result, various pollutants are reserved to this river. There for, water quality may be changed in the Mahaweli river catchment from time to time. It will help to make various threats in these environs. However several institutes have collected water quality data in the Mahaweli river; although adequate data recording water quality, there is no Proper spatial analysis Models, water quality Databases or Management plans to identify the quality of water in Mahaweli River.

There are many type of software can be identify to solve these type problem. Geographical Information System (GIS) Techniques is most effective and efficiency method to solve spatial water quality changes.