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fi :y=(x—.5)2 ,xE[-1.O,1.O] 

f2 :y=(1+sin6x)/2,x[-1.O,1.O} 

£3 :y=e,xE[_1.O,1.O] 

f5 :y=log(x+2.5),xE[-1.OJ.O 

1 	 r 
f6:y 	 ,xE[-1.O,1.Oj 

(1+(x—.25)2 ) 

£7 :y=.35(x+2.5)° ,xE[—LO,LO] 
f4 : y = tanh(4x),XE[-1.0,1.0] 

f8:y=3tan 1 (2x) , x[-1.O,1.O] 

Plots of these functions can be found in Appendix B(see Figures 1.1-1.8).The following 

data sets are taken from Tarwater[7] for numerical simulations. 

9 unequally spaced points 

5, = {-1.o,-,95,-.9,-.8,-,7,-.1,.5,.75,1.o} 

9 Chebyshev points 

S. = {- .985,-.866,-.643,-.342,O,.342,.643,.866,.985} 

17 unequally spaced points 

S3  = {-1.o,_.97s,_.9s,-.925,_.9,-.8s.8,-.75,-.7,-.4,_.1,.2,.5,.62s,.75,.875,1.o} 

17 Chebyshev points 

S4 = {- .996,-.962,-.895,-.798,-.674,-.526,-.36,-. 184,O,.184,.361,.526,.674,.798,.895,.962,,996} 

25 unequally spaced points 

1-1.0-.975-.95-.925-.9-.875-.85 -.825-.8-.75-.725-.7-.55-.4-.25-.1 .05.2.35 
155 _ 	

5, .625,. 7, .75, . 875, 1,0 

25 Chebyshev points 

1S 	
.... 1-998 -.982'-951 -.905 -.844 -.771'  -.685 -.588 -.482 -.368 -.249 -.125'0 .125 .249 

[.368,.482,.588,.685,.771 , .844,905,951,982,998 



Altogether 8 test functions are interpolated over 6 data sets. One-dimensional MQ, 

RMQ and GA radial basis functions were used to interpolate various data generated by 

8 functions. RMSE is used as a measure of 'good fit'. The lower the RMSE, the better 

the fit. This RMSE is computed over a uniform mesh containing 50 points. 

'Optimal c 2  'is the value which corresponds to the lowest RMSE. But finding the 

optimal c 2  is an open research question. So far no analytical techniques have been 

developed to find this value, in our numerical experiments plots were made of log(c2 ) 

versus log(RMSE). By looking at these curves we can conclude such a value does exist. 

So when we refer as 'optimal c 2 ' in this document what we mean is an approximate 

value of this elusive value. 

Many researchers have proposed various schemes to find the optimal c 2 . The pioneers 

of RBF approximation techniques believed the optimal c 2  is solely dependent only on 

the data sets interpolated. Hardy [1] who first used RBF approximation techniques and 

Foley [8] suggested a scheme depending on the average distance between data points. 

Foley [8] simplified the calculation using (Xinax  Xflflfl 	
as an approximation of the 

average distance squared from a data point(x;, y1 ). Franke [9] proposed schemes taking 

into account the 'scattering' of the dataset the function interpolated. Tarwater [7] made 

some modifications to Franke's scheme incorporating the average distance between 

points as a factor. 

The followings are the analyzed schemes: 
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I) Hardy's scheme 

c 2 =0.8152 d whered=
It/ 
 ci. =minx —x 

, 	 N 	
l 	 I 	 J 

Franke's scheme 

2 	
1.252 

(Xrnax - VmIn 

)7 

N 

Foley's method 

=4 (X max  - Xn1in Y 

N 2 

Modified Franke's method I 

= 1.252 	 )max DBP 

Modified Franke's method 2 

C 2 = 1 .252 	Xmin  
)2 

max DBP 
where max DBP = niaxx1 - x, ji 

- 
jj  = i) and 

N 	min DBP 

min DBP = mm ~ Xi - x, ji 
- A = i). 

In our numerical experiments for a test function, a dataset and given radial basis 

function log(RMS error) is plotted against log(shape parameter c2 ) at first. 20 

evaluations were used to plot this curve. (see Apendix code A 1. 1.3) 

In shape parameter c2 table optimal c2 column is divided into two columns namely 

optimall c2 , optimal2 c2 (see Table 2. 1 . 1). Optimall c2 is the value of c2 which gives 

the minimum RMSE. This value is obtained using log(c7 ) versus log(RMSE). 

As the consequence of this we were able to get some idea about the range we have to 

look for the 'optimal c2 '. Then we have to 'fine-tune' this range to obtain a c2 not only 
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with lowest RMSE but also it must be computationally stable. Optimal 2 c2  is the value 

obtained as mentioned above. 20 evaluations are used to plot this curve and shape 

parameter c2  vs. RMSE is plotted (see Apendix code A 1.1.4). 

For instance when function f2 was interpolated over dataset Si using MQ, we were able 

determine optimal Ic2  as 10( see Table 2.1.1). When fine-tuning this value, we get a 

local minimum at 6.15 and as consequence optimal 2 c2  (see Figure 2.1,1, 2.1.2). But 

for some cases we were unable to reach a local minimum. In those cases we have to opt 

for stable computation. When fine-tuning c2  we have to increase c2  till the graph 

remains smooth. Beyond this point the curve becomes 'jagged' indicating instability in 

computation. in these cases the 'breakdown' point is the optima12 c2value. 



Figure 2.1.1 log (shape parameter c) vs. log (RMSE) of function 12 interpolated over dataset Si using 
MQ REF. 
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Figure 2.1.2. Shape parameter c vs. RMSE of function 12 interpolated over dataset Si using MQ RBF. 
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Figure 2.1.3 Iog(shape parameter c) vs log(RMSE) of function £3 interpolated over dataset S3using RMQ 
RBF. 
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Figure 2.1.4 Shape parameter c vs RMSE of function £3 interpolated over dataset S3 using RMQ RBF. 
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When function f3 interpolated over dataset S3 using GA, we determined optimall c2  as 

3. 1. However, due to numerical instability we were unable to approach this value and 

were only able to go as far as 0.35. So this 'break down' point is the optimal2 c2 value. 

Beyond this the graph becomes unsniooth indicating instability (see Figure 2. I .3, 2.1.4). 

In few cases we got smooth curves with local minimum when fine-tuning c2 . In these 

cases, when optimall c2 and optimal2 c2  are nearly equal it can be seen that the 

optimal2 c2  is a good approximation of optimal c2 . For example, when f2 interpolated 

over dataset SI using MQ the values of optimall c2 , optimal2 c2  are 10, 6.15 

respectively (see Figure 2.1.1, 2.1.2). 

In the RMSE table two RMS errors are given namely optimall c2 , optimal2 c2 . For 

optimall the order of the RMS error is given since in most cases optimall computation 

is unstable (see Appendix code Al. 1.2). 

As Rippa [ii] has observed we also came to the same conclusion that optimal c2  

depends on the following factors: 

Number of the data points. 

Distribution of the data points. 

Function approximated. 

Precision of computation 

Carlson and Foley [12] argued that optimal c 2  is essentially independent of the number 

and distribution of data points. By looking at the shape parameter c 2  table we can see 

that it might be true in some cases but not in many other. For example function 5 when 

MEE 



interpolated over datasets SI, S3 using MQ RBF the optimall c 2  are 100, 10 

respectively (see Table 2.1.1, 2.1.3). This indicates that optimal c2 depends on number 

of data points. 

When function fi interpolated over datasets S5, S6 using RMQ RBF, we obtained 

optirnall c 2  31.6, 3.1 respectively (see Table 2.1.5, 2.1.6). This shows that although 

datasets S5 and S6 have same number of data points their distribution has an effect on 

the optimal shape parameter. 

Also both Car Ison and Foley [12] observed that optimal c 2  is strongly depends on the 

function approximated, which confirms our observation. For the same dataset and RBF 

different functions have different optimal shape parameters (see Table 2.1.5). 

0.0012 

0.001 

00003 
IRMS error 0.0006 

0.0004 

0.0002 

0 

 

shape parameter 02 

Figure 2.1.5 Shape parameter 	vs. RMSE of function 116 interpolated over dataset S3 using GA RBF 
drawn using 20 digits precision in Maple software. 
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1.34e-Oa 

1.32 e-OE 

RMS error 1 .e-U6 

1 .28e-DE 

1 .2Be-EJ 

1 .24e-0b 

0.4 	0.42 	0.44 	0.46 	0,4B 	0.5 
shape parameter cA2 

Figure 2.1.6 Shape parameter c 2  vs RMSE of function f6 interpolated over dataset S3 using GA RBF 
drawn using 25 digits precision in Maple software. 

Now if we consider factor 4, all the computations in this document were carried out 

with 20 digits precision in Maple software. The precision of computation comes into 

play when we fine-tune c 2 . For instance for function f6 interpolated over data set S3 the 

optimal2 c 2  is 0.3 (see Figure 2.1.4). Beyond that the computation is unstable. But when 

we do the computation in 25 digits precision optima12 c 2  is 0.44 (see Figure 2.1.6). 

In our numerical experiments to find the 'optimal c 2 ' the following observations are 

made: 

. 	For all three radial basis functions MQ, RMQ and GA the overall shape of the 

log (RMSE) versus log (shape parameter c 2 ) plot is essentially the same. The 

error seems decreasing down to a value of c 2  then increases sharply. 

. 	In most cases, for the same function and dataset MQ and RMQ minimal error 

seem to occur for nearly the same c 2  values. This confirms the observation of 



Carlson and Foley that optimal c2  for both MQ and RMQ are nearly same (see 

Tables 2.1.5, 2.1.6). 

. Compared to other two radial basis functions, for the same function and dataset 

the optimal c 2  for GA is relatively small. For function fi interpolated over 

dataset S4 the optimal] c 2  values for MQ, RMQ and GA RBF are 10.0,10.0,1.0 

respectively (see Table 2.1.4). 

For the same function and radial basis function as the data points increase the 

optimal c 2  seems to get smaller. When function £3 interpolated over data sets 

SI, S3, S5 using MQ RBF the optimall c 2  are 31.6, 10.0, 3.1 respectively (see 

Tables 2.1.1, 2.1.3, 2.1.5) 

When the values of optimal 1 c2  and optirnal2 c2  are nearly equal then we can 

presume the optimal2 c2  is a good approximation for real optimal c2 . Consider 

function f4 interpolated over dataset S4 using MQ RBF the values of optimall 

c2  and optiinal2 C2 are 1 .0, 0.96 respectively (see Table 2.1.4). 

When optimal I c2  is large we were unable to fine-tune c2  and obtain good optima12 

c because of severe ill-conditioning of matrix A. consider functions fi and f5 

interpolated over dataset SI using MQ RBF whose optimal! c2  values are 316.0 

and 100.0 (see Table 2.1.1). 

Now we analyze the performance of various schemes mentioned above. The shape 

parameters obtained using these schemes are given in Tables 2.1.1-2.1.6 (see Appendix 

code Al.l.l). 

The error produced when using c2  value obtained using Hardy's scheme [7] is 

unacceptable. 
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. Of all the schemes studied for MQ and RBQ interpolants Modified Franke's 

method 2 is the most promising method. Mod Fral is the second most effective 

method (see Tables 2.1.7, 2.1.8, 2.1.9 and Appendix B Tables 2.1.1-2.4.6) 

In some cases Frank and Foley [7] schemes perform equally well if not better. 

Consider flinction fB interpolated over dataset S2 using RMQ RBF the RMSE 

error for Frank's and Foley's schemes are 1.6E-2, 7.IE-2 respectively which are 

of same order as that of Modified Frank [7] schemes (see Table 2. 1. 10). 

. For GA radial basis function Frank's [7] scheme consistently produces good 

result than the other schemes (see Table 2. 1.11). 

Despite the fact Modified Franke's method 2 consistently gives better c2  values, 

in most cases they are greater than the optima12 c2  valLie, which in turn makes 

the computation of error unstable. One way to overcome this problem is to 

increase the precision of computation. Since cost of computation also increases 

with it, we can overcome this by developing robust algorithms to solve system 

of linear equations. 

Fn Frank Fole modfr modFr Optimal MQ Optimal Optimal GA 

yc alc2  a2c  RMQ ? 

1  2 1 2 316.0  215.0  26.0 100.  6.0 
.694 .198 1.875 8.33 

2 .694 .198 1.875 8.33 10.0 15.0 10.0 7.4 1.0 1.04 
3 .694 .198 1.875 8.33 31.6 18.0 31.6 23.0 10.0 7.0 
4 .694 .198 1.875 8.33 1.0 1.2 1.0 1.38 0.31 0.28 

100.  
.694 .198 1.875 8.33 100.0 17.0 20.0 3.1 7.50 

6 .694 .198 1.875 8.33 31.6 14.5 31.6 18.0 3.1 3.24 
100. 

.694 .198 1.875 8.33 100.0 17.0 23.0 31.6 8.50 

8 .694 1 	.198 1.875 8.33 31.6 12.0 1.0 0.95 1.0 0.48 
Table2. 1.1 Optimal shape parameters using MQ, RMQ arid GA RBF and shape parameters obtained 
using schemes for 8 test functions intcrpolatcd over datasci SI. 
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