ANALYSIS OF METAL CONTENT IN BLACK PEPPER POWDER AVAILABLE IN THE SRI LANKAN MARKET

By

Prashani Thushara Sandanayake

Thesis submitted in partial fulfillment requirement for the award

of the degree of

Master of Science

In

Food Science and Technology

Of the Faculty of Applied Sciences

University of Sri Jayawardenepura

Gangodawila, Nugegoda,

Sri Lanka.

2015

DECLARATION

The work in this thesis was carried out by me as a project under the supervision of Prof. Arthur Bamunuaarachchi, Dr. (Mrs.) Indira Wickramasinghe and Mr. R.M.G.B. Rajanayake and a report on this has not been submitted in whole or in part to any University or any other institution for another degree.

P. Sandanayake

Prashani T Sandanayake

i

We Prof. A. Bamunuarachchi, Dr. Indira Wickramasinghe and Mr. R.M.G.B. Rajanayake joinytly here by certify that the above statement in the preceding page made by the candidate is true and this thesis is suitable for submission to the university for the purpose of evaluation.

Supervisor

Prof. A. Bamunuarachchi Emeritus Professor Department of Food Science and Technology Faculty of Applied Sciences, University of Sri Jayewardenapura Gangodawila, Nugegoda

Supervisor

Dr. Indira Wickramasinghe Senior Lecturer, Department of Food Science and Technology Faculty of Applied Sciences University of Sri Jayewardenapura, Gangodawila, Nugegoda

Mr. R.M.G.B. Rajanayake City Analyst Colombo City Analyst's Laboratory Colombo Municipal Council Colombo 07

TABLE OF CONTENTS

DECLARATION	1
TABLE OF CONTENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	Х
ABBREVIATIONS	xi
ACKNOWLEDGEMENT	xii
ABSTRACT	xiv
CHAPTER 1- INTRODUCTION	1
CHAPTER 2-LITERATURE REVIEW	5
2.1.Taxonomy of Black pepper	5
2.2.History	5
2.3.Varieties	6
2.4.Major Growing Areas, soil and climate	6
2.5.Crop establishment	7
2.5.2Field Planting	7
2.6Application of fertilizer	8
2.7Harvesting and post harvesting	8
2.7.1.Threshing	9

2.7.2 Cleaning	9
2.7.3. Drying	10
2.7.4. Grading	11
2.7.5. Grinding	11
2.7.6.Packaging and storage	11
2.8. Standard quality specifications	12
2.8.1. International Standards to Regulate Heavy Metals in Spices	12
2.8.2. Organoleptic properties	13
2.8.3. Nutritional properties	13
2.8.4. Antimicrobial properties	13
2.8.5. Antioxidant properties	13
2.8.6. Medicinal and Chemical Properties	14
2.9. Metals present in Spice/ Black Pepper	14
2.9.1. Effect of Trace metals in Spices	15
2.9.1.1. Copper in food	15
2.9.1.2. The role of copper	15
2.9.1.3. Effects of Copper deficiency	16
2.9.1.4. Effects of excess copper	16
2.9.2. Zinc in food	16
2.9.2.1. The role of zinc	17
2.9.2.2. Zinc toxicity	17

2.9.2.3. Effects of zinc deficiency	17
2.9.2.4. The effects of excess zinc	18
2.9.3.Iron in food	18
2.9.3.1.The role of iron	18
2.9.3.2.Iron toxicity	19
2.9.3.3.Effects of iron deficiency	19
2.9.3.4.Effects of excess iron	20
2.9.4.Toxic Metals	20
2.9.4.1.Lead in food	20
2.9.4.2.Effects of lead	20
2.93.Cadmium in food	21
2.9.4.4.Effects of cadmium	22
2.10 Ways of metal poisoning	22
2.10.1.Sources of emission	23
2.10.2.Sources of human and plants exposure	23
2.10.3.Vehicular traffic density	23
2.10.4.Irrigation water	24
2.10.5.Compost and sludge	24
2.10.6.Fertilizer application	24
2.11 Analysis of metals	25
2.11.1.Atomic Absorption Spectroscopy	25
2.11.2.Flame Atomic Absorption Spectroscopy	26
2.11.3.Graphite Furnace Atomic Absorption Spectroscopy	26
2.11.4.X-Ray fluorescence (XRF) Analysis	27
2.11.5.Sample Pre Treatment	28
2.11.6.Wet Digestion	28
2.11.7.Dry Ashing	28
CHAPTER 3- METERIALS AND METHODS	30

v

3.1 Sample collection for the analysis	30
3.2 Sample preparation for Atomic absorption spectrometric analysis	30
3.2.1. Marterials	30
3.2.1.1Reagents	31
3.2.2 Cleaning Glassware and containers	31
3.2.3 Method	31
3.3 Atomic absorption Spectrometer (AAS) analysis	32
3.3.1 Flame Atomic Absorption Spectrometer (FAAS)	32
3.3.1.1. Materials	32
3.3.1.2. Method	32
3.3.2. Graphite furnace Atomic Absorption Analysis.	34
3.3.2.1. Materials	34
3.3.2.2. Method	35
3.4 Calculations	35
3.4 Sample preparation for X-Ray fluorescence Spectrometric analysis	36
3.4.1. Apparatus and Materials	36
3.4.2 Method of X-ray fluorescence spectrometric analysis	37
3.5 X-ray fluorescence spectrometric analysis	37
3.5.1. Materials	37
3.5.2 Method	37
3.6 Statistical Data analysis	39

vi

CHAPTER 4- RESULTS AND DISCUSSIONS	40
4.1 Sampling	40
4.2 Purity of chemicals and water used as solvent	40
4.3 Analysis of metals in Black Pepper by Atomic absorption Spectroscopy a	nd
X-Ray florescence spectroscopy method	41
4.3.1.Analysis of macro metals	41
4.3.2. Analysis of Micro metals using AAS and XRF method.	49
4.3.3.Analysis of Toxic metals	60
CHAPTER 5- CONCLUSION	66
REFERENCES	68
APPENDIX	72-97

LIST OF TABLES

Table 2.1 - Nutrient in the fertilizer mixture	8
Table 2.2 - WHO maximum permissible limits for heavy metals in Spices	12
Table 2.3 - Specification given in Sri Lanka Standard Specification for Ground	13
Table 3.1 - Standard series of metals for flame AAS	33
Table 3.2 - Spectrometer parameters used for AAS	34
Table 3.3 - Standard series for Pb and Cd ions	35
Table 3.4 - Graphite Furnace parameters used in analysis of Pb and Cd.	35
Table 3.5 - Operating parameters of XRF	36
Table 3.6 -Characteristic fluorescent energy values of elements	39
Table 4.I - The macro metals of black pepper brands (batch wise) {mg/g,dry	weight
1(DW) -ASS	41
Table 4.2 - The macro metals of black pepper brands {mg/g dry weight (DW)}	-AAS
	43
Table 4.3 - The macro metals of Black pepper brands (brand wise) {mg/g dry	weight
(DW)}-X-Ray	43
Table 4.4 - The Micro metals of Black pepper brands (Batch wise) {mg/g,dry	weight
(DW) -AAS	49
Table 4.5 - The micro metals of Black pepper brands (brand wise) {mg/g,dry}	51
Table 4.6 - The micro metals of Black pepper brands (Brand wise) {mg/Kg dry w	veight
	52

Table 4.7 - The Toxic metals of Black pepper brands (Batch wise) { µg/g dry weight (DW)} –AAS 60

Table 4.8 - The Toxic metals of Black pepper brands (Brand wise) { μ g/g dry weight

61

LIST OF FIGURES

Figure 2. 1 - Pepper Plant	5
Figure 2.2 - A cabinet dryer	10
Figure 2. 3 - Atomic Absorption Spectrometer	26
Figure 2. 4 - Instrumentation of graphite furnace	26
Figure 4.1 . Na content of Brands, unbranded and raw from AAS method	45
Figure 4.2 - K content of Brands, unbranded and raw from AAS method	46
Figure 4.3 - K Ion content of Brands, unbranded and raw.(XRF)	46
Figure 4.4 - Mg and Calcium content of Brands, unbranded and raw from AAS method.	
	47
Figure 4.5 - Calcium Ion content of Brands, unbranded and raw. (XRF)	48
Figure 4.6 - Fe content of brands, unbranded and raw in Black pepper- AAS method	53
Figure 4.7 - Fe content of brands, unbranded and raw in black pepper-XRF method	54

Figure 4.8- Zn and Cu content of brands, unbranded and raw in black pepper -AAS

Figure 4.9 - Zn and Cu content of brands, unbranded and raw in black pepper.-XRF

Figure 4.10 - Mn content of brands, unbranded and raw in black pepper -AAS.

Figure 4.11 - Mn content of Brands, unbranded and raw in black pepper.-XRF

Figure 4.12 - The Lead (Pb) and Cadmium (Cd) content of Black pepper -AAS

55

56

58

59

63

х

ABBREVIATIONS

AAS- Atomic Absorption Spectroscopy

FAAS-Flame Atomic Absorption Spectroscopy

GFAAS-Graphite Furnace Absorption Spectroscopy

WHO- World Health Organization

XRF- X- Ray Fluorescence spectroscopy

ppm- part per million

ppb- parts per billion

ACKNOWLEDGEMENT

My Grateful Acknowledgement with special thanks is made to my supervisors, Professor Arthur Bamunuaarachchi, Dr. Indira Wickramasinghe and Mr. R.M.G.B. Rajanayake for their tireless efforts in supervising and guiding me through the entire period for the accomplishment of this thesis.

I appreciate the assistance and guidance I received from Mr. P.Dias, Senior lecturer, University of Sri Jayewardenepura and Mr Waduge, Director, atomic Energy Authority of Sri Lanka

I would like to acknowledge with thanks the guidance I received from Mr. Asoka Sandanayake, my father- in- law for providing valuable feedback that improved my thesis.

I offer my sincere gratitude to Waruna Gunasekera my Nephew, Ms. Sajeewani Somarathna Senior Assistant Librarian, University of Colombo, My friends Melani Vithanage and Vidyani Amaradivakara for their constant support and, Guidance without which this project would not have been possible.

I take this opportunity to thank The Dr. M.A.J.Wansapala coordinator and Dr Rupika Perera co- coordinator of this M.Sc in Food Science and Technology and all other academic and nonacademic staff of Department of Food Science and Technology, University of Sri Jayawardenapura and all the staff at City Analysist Laboratory who helped me to carry out this research work.

Finally my sincere thanks to my family and friends for all the love, understanding, and encouragement support throughout the study period.

xii

Dedication

To my beloved husband Hareendra, Son Ashan and daughter Dinuli, for the time you had to suffer and stay without me because of my studies. I owe this one to you.

ANALYSIS OF METAL CONTENT IN BLACK PEPPER POWDER AVAILABLE IN SRI LANKAN MARKET.

By Prashani. T. Sandanayake.

ABSTRACT

Black pepper (*Piper nigrum L*.), is a highly valued spice crop which is originated in India and subsequently spread to other countries. As far as the export market is concerned pepper is one of the major items exported by Sri Lanka. In recent years, there has been a growing interest in monitoring heavy metal contamination of spices. Pepper has been reported to contain significant quantities of some metals which cause detrimental effects on human health.

In this study concentrations of some heavy metals (Sodium, Potassium, Calcium, Magnesium, Zinc, Copper, Iron, Manganese, Lead, and Cadmium) in five common brands and unbranded Black pepper samples which are available in the local market in Sri Lanka were determined. Whole black pepper samples were analyzed as a control to study the possible metal contaminations during the process of powdering Metal analysis was carried out by Atomic absorption spectroscopy and X-ray Fluorescence Spectroscopy. Lead and Cadmium were analyzed using Graphite Furnace whereas the other metals were analyzed by Flame Atomic Absorption spectrometry and X-ray fluorescence spectrometry. Wet digestion method was used for digestion of samples for Atomic Absorption spectrophotometry

The Study shows differences in metal concentrations of their mean values such as K>Ca>Mg> Na> Fe>Mn> Cu>Zn>Cd>Pb. The results obtained from Atomic Absorption Spectrophotometry analysis the range of metals on a dry weight basis were;

Potassium 16604.3- 20428.7mg/kg, Calcium 1783.2683.2 mg/kg, Sodium 107.9 mg/kg, Magnesium 1747.9- 2194.6 mg/kg, Zinc 9.4-12.8 mg/kg, Copper 9.5-14.5 mg/kg, Ferrous 44.1-224.7mg/kg, Manganese 33.6-60.4mg/kg lead 155.8- 344.9µg/kg, Cadmium 212.6-363.8 µg/kg respectively. The study revealed that there is compliance between the two methods. In all values only the values for Cadmium was significantly above the WHO maximum permissible limit (MPL), while the others were below the MPL inferring that the agricultural practices might be affecting cadmium contamination in pepper. The study highlighted possibility of wear and tear of machineries causing high Iron content in powdered pepper. According to the present study generally processed pepper contains more metal contents than whole pepper except for sodium, calcium and manganese ions.