ANTI-OXIDANT ACTIVITIES OF SOME LESSER KNOWN LEAFY VEGETABLES

By

W.M. UDAYANGANI MANI KE

WICKRAMASINGHE

M.Sc.

2006

ANTI-OXIDANT ACTIVITIES OF SOME LESSER KNOWN LEAFY VEGETABLES

By

W.M. Udayangani Manike Wickramasinghe

Thesis submitted to the University of Sri Jayewardenepura for the award of the Master Degree in Food Science and Technology on 31st march 2006

DECLARATION

The work described in this thesis was carried out by me at university of Sri Jayewardenepura under the supervision of Prof. Arthur Bamunuarachchi and Ms. I. Wickramasinghe and a report on this has not been submitted in whole or in part to any University or any other institution for another degree/ diploma.

2006 11 17

Date of submission

Signature of the Candidate

DECLARATION

"We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the Purpose of Evaluation".

2006 / 11 / 17

Date of declaration

Signature of the Supervisor

Prof. ArthurBamunuarachchi, Head Department of Food Science and Technology, University of Sri Jayawardenepura, Nugegoda, Sri Lanka.

Signature of the Supervisor

Ms.I. Wickramasinghe, Lecturer, • Department of Food

Science and Technology, University of Sri Jayawardenepura, Nugegoda, Sri Lanka.

17 11 2006

Date of submission

CONTENTS

List of tables	vi
List of Figures	vii
List of appendices	vii
Acknowledgement	viii
Abstract	ix

Chapter-1

1.0.	Introduction	1-4
1.0.	Introduction	

Chapter- 11

2.1 Antioxidants	5
2.1.1 Definition	5
2.1.2 Classification of antioxidants	6
2.1.2.1 According to the origin	6
2.1.2.1.1. Synthetic antioxidants	6
2.1.2.1.2. Natural antioxidants	7
2.1.2.1.2.1. Enzymatic antioxidants	7
2.1 .2.1.2.2. Non –Enzymatic antioxidants.	8
2.1.2.1.2.2.1 Nutrient antioxidants	8
2.1.2.1.2.2.2 Non-Nutrient Antioxidants	9
2.1.2.1.2.2.2.1 Flavonoids	9
2.1.2.1.2.2.2.2 Carotenoids	10
2.1.3. Antioxidant functions	11
2.1.3.1. Enzymatic functions	11
2.1 .3.2. Chemical functions	11
2.1.3.2.1 Mode of Action of Singlet- Oxygen Quenchers	12
2.1.3.2.2 Mode of Action of Retarders	12
2.1.3.2.3 Mode of Action of Metal Chelators	12
21324 Mode of Action of chains breakers	12

2.1.3.2.5 Mode of Action of Synergists	13
2.2. Applications of Natural Antioxidants	13
2.2.1. Medical applications.	13
2.2.2. Food Applications	14
2.2.3 Antioxidant and aging	16
2.3 In Vitro and in Vivo concepts for Antioxidant Methodology	17
2.3.1 Antioxidant methodology in vitro concepts	17
2.3.2.1 Antioxidant Methodology in vivo concepts	17
2.3.2.2 Defence systems in vivo against oxidative damage	18
2.4 Fish oils	18
2.4.1 Shark Liver Oil	19
2.4.2 Compositions of Shark Liver oil	20
2.4.3 Health benefits of shark liver oil	20
2.4.4 Shark Liver oil and Industry	22
2.4.5 Extraction of fish oils.	22
2.4.6 Measure of antioxidant activity	23
2.4.6.1. Spectrophotometric methods	23
2.4.6.1.1 Thiocyanate method	23
2.4 .6.1.2. DPPH ⁺ free radical scavenging assay	23
2.4 .6.1.3. ABTS ⁺ Method	24
2.4.6.1.4. 2-Thio Barbituric Acid test (TBA test)	24
2.4.6.2. Spectroscopic methods	24
2.4.6.2.1. Electron Spin Resonance Spectroscopy. (ESR)	24
2.4.6.2.2. IR spectroscopy	24
2.4. 6.2.3. Chemiluminescence spectroscopy	24
2.4.6.3. Active oxygen method. (AOM)	24
2.4.6.4. Measure of lipid oxidation	24
2.4.6.4.1 Theory of peroxide value (PV) determination	25
2.4.7 Lipid oxidation	25
2.5 Determination of vitamin C	26

2.6 Leaf Vegetables	26
2.6.1 Red tampala	26
2.6.1.1Physical Characteristics of Red tampala	27
2.6.1.2 Composition of Red tampala	27
2.6.1.3 Food Uses of Red tampala	27
2.6.1.4 Medicinal Action and Uses of Red tampala	27
2.6.2 Kura tampala	27
2.6.2.1 Physical Characteristics of Kura tampala	28
2.6.2.2 Composition of Kura tampala	28
2.6.2.3 Food Uses of Kura tampala	28
2.6.2.4 Medicinal Action and Uses of Kura tampala	28
2.6.3 Penela-wel	29
2.6.3.1 Physical Characteristics of Penela-wel	29
2.6.3.2 Composition of Penela-wel	29
2.6.3.3 Food Uses of Penela-wel	29
2.6.3.4 Medicinal Action and Uses of Penela-wel	30
2.6 .4 Agune	30
2.6.4.1 Physical Characteristics of Aguna	30
2.6.4.2 Composition of Aguna	31
2.6.4.3 Food Uses of Aguna	31
2.6.4.4 Medicinal Action and Uses of Aguna	31
2.6.5 Genda-kola	31
2.6.5.1 Physical Characteristics of Genda-kola	31
2.6.5.2 Composition of Genda-kola	32
2.6.5.3 Food Uses of Genda-kola	32
2.6.5.4 Medicinal Action and Uses of Genda-kola	32

.

Chapter -111

3.1 Estimation of Moisture and Ash Content	33
3.1.1 Determination of moisture Content (Wet basis)	33

3.1.1.1 Materials	33
3.1 .1.2 Method	33
3.1.2 Estimation of Ash Content	34
3.1.2.1 Materials	34
3.1.1.2 Method	34
3.2 Preparation of Leaf Vegetabls Samples	35
3.2.1 Preparation of leaf vegetables Extract for evaluation of	
antioxidant activity	35
3.2.1.1 Materials	35
3.2. 1.2 Method	35
3.2.2 Preparation of leaf vegetable Extract for Estimation of	
constituents	36
3.2.1 Materials	36
3.2 .2.2 Method	36
3.3 Extraction of shark liver oil.	36
3.3.1 Materials	36
3.3. 2. Method	37
3.4 Evaluation of Antioxidant Activity of leaf vegetable Samples	38
3.4.1 Materials	38
3.4.1.1 Apparatus.	38
3.4.1.2 Reagents	39
3.4.2 Method	39
3.4.2.1 Determination of peroxide value	40
3.5 Estimation of Ant oxidative Constituents of leaf vegetable samples	40
3.5.1 Tests for tannins and Polyphenols	40
3.5.1.1.1 Materials	40
3.5.1.1.2 Reagents	41
3.5.1.2 Method	41

3.5.2 Test for Flavonoids	42
3.5.2.1 Materials	42
3.5.2.2 Method	42
3.5.3 Test for Anthocyanins	43
3.5.3.1 Materials	43
3.5 .3.2 Method	43
3.5.4 Test for Anthraquinones	44
3.5.4.1 Materials	44
3.5.4.2 Method	44
3.5.5 Tests for vitamin C	44
3.5.5.2 Standard curve	45
3.5.5.1.1 Materials	45
3.5. 5.1.2 Reagents	45
3.5 .5.1.3 Methods	45
3.5.5.2 Preparation of the sample	46
3.5.5.2.1 Materials	46
3.5. 5.2.2 Reagents	46
35 523 Methods	46

Chapter-1V

4.1 Moisture and Ash content of leaf vegetable samples	47
4.1.1 Moisture Contents of leaf vegetable Samples	47
4.1.2 Ash Content of leaf vegetable samples	48
4.2 Drying time and Storage of Leaf vegetable samples	48
4.3 Recovered percentages and Extractable percentages of Leaf vegetable	49
4.3.1 Recovered percentage high in Agune	49
4.3.2 Extractable percentages high in Aguna	50

4.3.3 Preparation of Leaf vegetable Extract for Estimation of Constituents	50
4.4 Extractable Percentage of Shark Liver oil	51
4.5. Antioxidant activity of leaf vegetable samples	52
4.6 Antioxidative Constituents of Leaf Vegetable Samples	57
4.6 .1 Tannins and polyphenols presenting leaf vegetable samples	57
4.6. 2 Flavonoids present in leaf vegetable samples	59
4.6.3 Anthocyanins Present in Leaf vegetable samples	60
4.6.3.1 Thin layer Chromatographic analysis of Anthocyanins	61
4.6.4 Anthraquinones Present in Leaf Vegetable samples	62
4.6.5 Vitamin C Content of leaf vegetable	63
4.6.5.1 Standard curve for vitamin C	63
4.6.5.2 Vitamin C content of Leaf Vegetable samples	65

Chapter-V

5.1 Conclusion	67
5.1.1 Moisture and Ash Contents	67
5.1.2 Evaluation of Antioxidant activity	67
5.1.3 Estimation of chemical constituents	67
5.2 Further Work	68
References	69-72

List of Tables

Table 2:1 Type of Antioxidant According to chemical Activity and Their
Chemical Compounds /group11Table 4.1: Moisture and Ash Contents of Leaf vegetable47Table 4.2: Drying time of each Leaf vegetable Sample at 50°C48Table 4.3 Extractable Percentages at Different Stages50

Table 4.4 Oil percentages in shark livers	51
Table 4.5 Peroxide Values (PV) of Different treatments with Days at the	storage
Temperature of 70 [°] C	53
Table 4.6: Results of Test for Tannins and Polyphenols	58
Table 4.7: the results of Tests for flavonoids	59
Table 4.8: Characteristic Properties of Flavonoid Classes (Harbone, 1976)	60
Table 4:9 R. f values for Anthocyanins in leaf vegetable	62
Table 4.10 the results of tests for Anthraquinones in Leaf Vegetable sample	es62
Table 4.11 Values of Absorbance for Standard curve	63
Table 4.12 Vitamin C content of Leaf Vegetable samples	65

List of Figures

Figure 4.1 The Graph between Peroxide Value (PV) and Storage	
Time of Testing	54
Figure 4.2 Thin Layer Chromatogram of extract Forestal	61
Figure 4.3 The Graph between Absorbance and weight of ascorbic	
acid content	64

LIST OF APPENDICES

7.1 Preparation of Solutions	73
7.1.1 Standardization of sodium thiosulphate solution	73
7.1.2 Preparation of starch indicator solutions	74
7.1.3 Preparation of Dye solution	74
7.1.4 Preparation of Standard Ascorbic Acid Solution	74
7.1.5 Preparation of 1000-ppm antioxidant solution	74
7.1.6 Preparation of 1% Gelatin Solution	74
7.1.7 Preparation of Gelatin salt Solution	75
7.1.8 Preparation of Ferric Chloride Test Solution	75

7.2 Analyzed Data of peroxide Values (PV) of Evaluation of Antioxidant activity

ACKNOWLEDGEMENT

This is to express my deep sense of gratitude to all those, who helped me to complete this research project successfully.

First and foremost I wish to express my gratitude to my supervisor Prof. Arthur Bamunuarachchi, Head Department of Food Science and Technology for the advice, guidance and suggestion given by him throughout the project.

I am grateful to Dr. K.K.D.S. Ranaweera; course Coordinator of the M.Sc in Food Science and Technology program, University of Sri Jayewardenepura for directing me to under take my project work at university.

I am greatly indebted to Mr Jagath Wansapala, Ms I. Wickramasinghe, and Ms Rupika Perera of the Department of Food Science and Technology, University of Sri Jayewardenepura for their generous support and guidance to me during working in laboratory.

I also wish to thank Mr Sisira Weerasinghe, Mr G.P.Rupasinghe of the Department of Food Science and Technology and all members of the laboratory of the chemistry department for their kind cooperation and warm friendship.

I would like to thank Ms M.K.F. Nadheesha of senior batch for guidance extended to me during working in laboratory. I also wish to thank Mr.K.M.D.G.K.B. Kakulandera computer operator and his generous support and helped me to complete this thesis successfully

I would like to take this opportunity to express my sincere thanks to family members of my uncle for providing me accommodation during the M.Sc. Program and their kindness and understanding. Last but not least I am grateful to my family members for their sustained support and encouragement.

ANTI-OXIDANT ACTIVITIES OF SOME LESSER KNOWN LEAFY VEGETABLES By W.M. Udayangani Manike Wickramasinghe ABSTRACT

Antioxidants are the chemical species, which has an ability to delay or inhibit oxidations. As People's living condition improves, it is an inevitable tendency that natural antioxidants take the place of synthetic antioxidants. The demand of natural antioxidants will be increased continuously, because of non toxicological effects on animals. Food and medical applications are the major applications of natural antioxidants. Main sources of antioxidants are plants and animals.

The research described in this thesis mainly focuses on evaluation of antioxidant activity of lesser known leafy vegetables (Red tampala: *Amaranthus paniculatus*, Kura tampala: *Amaranthus viridis*, Agune: *Tinospora malabarica*, Penela wel: *Cardiospermum microcarpum*, Genda kola: *Portulaca oleracea*. Determination of moisture, ash contents and estimation of chemical constituents, which may possess antioxidant activity of leaf vegetables were also described. Antioxidant activity was evaluated using fish oil modal. Peroxide values (PV) provide information regarding the antioxidant activity of substances. According to the results observed in this study Agune and Genda kola shows the highest antioxidant activity. Lowest antioxidant activity was shown by Kura tampala and Red tampala. Kura tampala show the lowest antioxidant activity and also which is some what similar to synthetic antioxidant BHT. All leaf vegetables had shown chemical constituents polyphenols, Anthraquinones, flavonoids and antocyanins. Red tampala and Genda kola shows the highest and lowest vitamin C.

CHAPTER-1

INTRODUCTION

1.0 Introduction

Our bodies naturally protect themselves against free radicals with a class of substances called antioxidants. Their traditional role is, as their name suggests, is inhibiting the development of oxidative rancidity in fat- base foods, practically dairy product, fried food and meat. More recent research has suggested a new role in inhibiting heart disease, hardening of the arthritis, rheumatism, cancer inflammatory condition, cataracts other visual problems and diabetics, etc in the human body. Foods and medicine will be integrated in world marketing the near future. It will undoubtedly increase the demand for natural antioxidants. The interest in using natural substances is mainly due to the toxicity and the low safety coverage of the synthetic antioxidants.

The stabilization of products of vegetable origin against autoxidation is thus less efficient than the stabilization of animal products. Protection factors of comparable antioxidants are several times higher in lard than in edible oils. The initial concentration of natural antioxidants in plant foods is already near the optimum so that a further addition of antioxidants has only a small effect, but it is useful for those cases when rapid decomposition of antioxidants is expected.

The pro- oxidative activity of iron and other heavy metals is less dangerous in plant materials than that of haeme derivatives in animal products, as plant materials usually also contains metal- chelating agents. The only important oxidation catalyst in raw materials and foods of vegetable origin is a group of lipoxygenases and related enzymes.

Over the past fifty years or longer, hundreds of substances derived mostly from vegetable sources have been tested as antioxidants for food lipids. The research reports of related investigations indicate in many instances that such "natural" substances

1