ASSESSMENT OF SECURITY IN COLOMBO METROPOLITAN AREA

WMP Wasantha Kumara

5998MD2014060

THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES UNIVERSITY OF SRI JAYEWARDENEPURA, SRI LANKA AS A PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE MASTER OF SCIENCE DEGREE IN GIS AND REMOTE SENSING ON 20TH MARCH 2016

DECLARATION OF THE CANDIDATE

I do hereby declare that work described in this thesis was carried out by me under the supervision of Prof. Sunethra Thennakoon and Dr. Ranjith Premasiri and report on this thesis has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

VP

Date 20 Marsch 20th

ms. W M P Wasantha Kumara No: 5/C/37 Kandalanda Homagama

ACKNOWLEDGEMENT

First and foremost, my most sincere gratitude goes to the supervisors and lecturing staff of the Master's Degree of Science in GIS and Remote Sensing at University of Sri Jayewardenepura for their supervision, instruction and guidance on the research for a period exceeding two years to make this effort success. The inspiration and motivating given by them was immensely helpful to the success of this research project.

At the same time all the members from Centre for Research and Development (CRD), Ministry of Defence will also be reminded with respect for their coordination, guidance and support towards the successful completion. Special gratitude should be presented to Lt Col SD Udayasena RSP for the continues guidance and the supervision throughout this extensive period.

CONTENT

Title Page	i
Declaration of Candidate	ii
Acknowledgement	iii
Content	iv-vi
Abstract	vii-viii
Abbreviation	ix
List of Table	x-xi
List of Figures	xii
CHAPTER ONE - INTRODUCTION	1-9
1.1 Background of the Study	1-5
1.2 Study Problem	5-8
1.3 Objectives of the Research	8
1.4 Significance of the Study	9
CHAPTER TWO - LITERATURE REVIEW	13-28
2.1 Introduction	13
2.2 Terrorist Targeting and Threat Evaluation	14
2.3 Public Safety and Security (PSS)	15
2.4 Homeland Security as a National Goal	15
2.5 GIS Supports the Homeland Security Mission	16
2.6 Community based GIS	17-19
2.7 Preparedness	19-20
2.8 Response	20
2.9 Recovery	21
2.10 Threats in the Urban Environment	22
2.11 Terrorists and Terrorism	23
2.12 Terrorists' Modus Operandi	23
2.13 Intelligence Estimates	24
2.14 Intelligence Preparation of the Battle (IPB)	25
2.15 Use of Technology	27
2.16 Issues Discovered with The Used Technologies	28

CHAPTER THREE - MATERIALS AND METHODOLOGY	30
3.1 Materials	30
3.2 Methodology	30-32
3.3 Study Area	33-33
3.3.1 Study Area Map	34
3.4 Method of Data Collection	35
3.5 Description of Parameters	36
3.5.1 Importance of Parameters	38
3.6 Data Checking	39
3.7 GIS Operations	40
3.8 Prioritization of Parameters	41-43
3.9 Develop Personal Geo-Database	44
3.10 Develop Model Builder	44
3.11 Study the positive security and risk factors for Colombo Metropolitan	Area 45
3.12 Specific Area	46
3.13 Use Euclidean Distance for distance factors	50
3.14 Use Kernel Density for Density Factors	51
3.15 Reclassifying Data	51
3.16 Use of Weighted Overlay Tool	52
3.17 Assigning scale values according to the factors	53
3.18Analyze the final output and develop final map	54
CHAPTER FOUR - RESULT AND DISCUSSION	55
4.1 Presented as individual maps.	55
4.2 ArcGIS Model builder	56
4.3 Euclidean Distance Analysis Maps	65-72
4.4 Kernel Density Analysis Maps	72-74
4.5 Security Status Analysis	74
4.6 Present Security Status	75
4.7 Present Security Situation Map	76
4.8 Creating of present situation theme using a matrix	77
4.9 Present Security Situation Charts	78-81
4.9 Enhanced Security Situation(Presently)	81-83

4.10 Present Risk Situation	83
4.11 Present Risk situation and attacks/ arrests	84
CHAPTER FIVE - CONCLUSION AND RECOMMENDATIONS	86
5.1 Conclusion	86
5.3 Ranking and Assigning of Weights to Risk Parameters	88
5.4 Ranking and Assigning of Weights to Security Parameters	88
5.5 Rating Methods	88
5.6 Deriving of Weights	90
5.7 Ranking and Assigning of Weights to Risk Parameters	91
5.8 Classification of Risk (Weighted)	92
5.9 Ranking and assigning of weights to security parameters	94
5.10 Classification of Security (Weighted)	95
5.11 Present Situation - Colombo metropolitan area (weights assigned)	96

References

98

ASSESSMENT OF SECURITY IN COLOMBO METROPOLITAN AREA

W M P Wasantha Kumara

ABSTRACT

Geographic Information system technology to ensure public safety and security using dynamic datasets requires systematic development of analysis sequences incorporating sufficient details and establishing flow of each process. Absence of a structured approach would consume a significant time for recalculations with datasets which requires consistent and frequent updating.

A typical case is the modeling of the spatial variations of the security against the risk in specific land extent based on zoning changes, un welcome incidents, national or local ceremonies etc. Apart from such dynamic data the relatively static data such as land use, road network admin boundaries and law enforcement boundaries become a part of a GIS model base data set. A GIS modeler needs the vision to structure a particular security application enabling the generation of output maps on each occasion of changes affected either to one all data layers. Hence it is great importance to identify the method, strengths and weaknesses of such an application ModelBuider is a component of ArcGIS software which enables creating, editing and management of GIS models.

The ModelBuilder creations enable the visualization and exploration of results in ArcMap. The Model Builder also facilitates the changes of parameter values, rerun selected processes, and intermediate data. The present work is an application of GIS based model and ModelBuilder to assess the spatial variability of security against the risk in the city of Colombo during 2009 under the heavy terrorist threat. Data sets of 1:50,000 scale were used with ArcGIS software. The systematic development of GIS model and the potential of ModelBuilder assembly for varying data layers and results generation with ease.

These types of applications enable the field commanders and decision makers to identify location vulnerability as a result of various scenarios such as terrorist attacks. explosions, arrests of terrorists suspects, public rallies or public unrest situations which may not be predictable therefore, this GIS based model and ModelBuilder application would help field commander and decision makers to customize spatial data set based models to facilitate rapid and rational decision making to ensure Public Safety and Security using GIS.

ABBREVIATION

MCDA	-	Multi criteria decision analysis
EE	-	Entry Exit
TAOR	-	Tactical Area of Operational Responsibility
AOI	-	Area of Interest
VIP	-	Very Important Personnel
VVIP	-	Vulnerability to Very Important Personnel
HVT	-	High Valuably Target
PSS	-	Public safety and Security
NSDI	-	National Spatial Data Infrastructure
LTTE	-	Liberation Tamil Tigers of Eelam
TAOR	-	Tactical Area of Operational Responsibility
OCC	-	Operations Command Colombo
GIS	-	Geographic Information System
GPS	-	Global Position System
RS	-	Remote Sensing
VPN	-	Virtual Private Network
UAC	-	User Account Control
IPB	-	Intelligence Preparation of Battlefield
IT	-	Information Technology
Recce	-	Map reconnaissance
PHP	-	Hypertext Preprocessor
MOD	-	Ministry of Defense
NGCCS	-	Next Generation Command and Control System
CTC		Concurrent Technologies Corporation
ICTP	-	Integrated Common Tactical Picture
COP	-	Common Operational Picture
OPS	-	Operational
INT		Intelligent
LOG	-	Logistic
AOI	-	Area of Interest
Div	-	Division
Bde	-	Brigade

LIST OF FIGURES

1. Operational map	3
2. Push pin on topo sheet map	5
3. Manual method of indication	6
4. Sand model	7
5. Blow up map	7
6. Methodology	31
7. Process flow	32
8. Study area map	34
9. Data layers	43
10. Josm map area selection	43
11. Data downloading through josm	44
12. Current security model builder	45
13. Risk due to attacks and explosives recoveries	46
14. Risk due to attacks	47
15. Arrests of terrorist suspects	48
16. Risk population	49
17. Euclidean distance formula	50
18. Model builder (euclidean distance)	50
19. Model builder (kernel density)	51
20. Reclassified classes	51
21. Reclassified classes	52
22. Arcgis weighted overlay tool	52
23. Model builder (weighted overlay tool)	53
24. Distance scale value assignment	53
25. Arrested within colombo metropolitan area	55
26. Attacks in colombo mp area	56
27. Arrests vs slums and shanties	57
28. Current security deployment	58
29. Land utilization map	59
30. Current road blocks	60
31. Snap road blocks	61

32. VVIP and vital locations	62
33. Model of the study(part1)	64
34. Model of the study (part2)	65
35. Euclidean distance analysis: road blocks	67
36. Euclidean distance analysis vulnerable localities	69
37. Euclidean distance analysis of road network	70
38. Euclidean distance analysis of waterhole	71
39. Kernel density analysis of arrested people	72
40. Kernel density analysis of attacks	73
41. Security status	74
42. Present security situation	76
43. New camp locations	79
44. Present security situation	80
45. Present security indicator	81
46. Present security situation and hvts	82
47. Present risk situation	83
48. Present risk situation and arrests, attacks	84
49. Present situation – colombo metropolitan area (weights assigned)	96

LIST OF TABLE

01. Software and hardware requirement	30
02. Risk parameters	41
03. Security parameters	42
04. Present situation matrix	77
05. Ranking and assigning of weights to risk parameters	88
06. Ranking and assigning of weights to security parameters	88
07. Present situation – colombo metropolitan area	88
08. Point allocation method	89
09. Ration estimation method	90
10. Ranking and assigning of weights to risk parameters	91
11. Classification of risk (weighted) method	92
12. Ranking and assigning of weights to security parameters	94

CHAPTER ONE INTRODUCTION

1.1 Background of the Study

Osama Bin Laden is an eye opener for the western powers to rethink about their strategy of divide and rule to achieve supreme power over the rest of the world. Aftermath of the 9/11 terrorist attack on peace living public of New York City, it has clearly demonstrated the importance of geospatial technologies in an emergency situations other than natural disasters. 30 years of prolonged insurgency by the Liberation Tamil Tigers of Eelam (LTTE) played havoc in the lives of innocent peace loving public in almost every parts of the country. There were many occasions that the safety of the public was vulnerable and threatened to a greater degree. Critical infrastructure which includes telecommunications, transportation, ports, airports, electrical power systems, gas and oil storage/ distribution, economic nerve centers like banks and finance, water supply systems, schools, public places, emergency services to become vulnerable targets to terrorists' attacks.

In any emergency situation, immaterial of its origin our nation's survivability and safety is depended on rapid access to and application of countless types of accurate, current and reliable geospatial information. Powerful geographic information systems are now available to fast render single or several layers of digital geospatial data along with heaps of tabular data into any map like product in order to visualize spatial patterns and distributions. These systems can facilitate near real time performance of a wide range of relevant geospatial analysis for the use of public safety by enhancing security. These systems can be used to access and process digital geospatial data virtually anywhere and can be instantly transmitted from and location it is maintained and retrieved at any place where it is needed. This digital geospatial is very much advantageous over the analog data and transitional spatial data.

Dynamic nature of Security and Risk generating factors would cause complex situations in different security scenarios. Diverse characteristics of public safety and security need to formulate geographic information technologies combined with appropriate sets of geospatial information to form an invaluable tool for handling, display, and analysis of spatial information involved in every aspect of public safety and security.

Geospatial information provides the spatial and temporal backdrop, analysis and decisions upon Detection, Preparedness, Prevention, Protection, Response and Recovery an all security scenarios.

Accurate and timely information easily accessed and capable of being shared across Grama Niladari Divisions, District Secretary Divisions, Province and local law enforcement agencies (Police) and security authorities is fundamental to the decision making capability of field commanders tasked with the public safety and security. But without the real-time ability to quickly visualize the spatial patterns of activities, undesirable incident locations, and understand the multi- layered geospatial context of complex emergency situations in ensuring of public safety and security will not be achieved. Modern state of the art technologies of geospatial information technology can provide decision makers with data they need to confidently encounter a wide variety of threats including terrorist attacks, sabotage, public unrest political rallies, and spontaneous ethnic clashes and natural disasters.

However, the existing implementation of the geospatial technologies across the Grama Niladari Divisions, District Secretary Divisions, Province and local law enforcement agencies (Police) and Security authorities necessary to fully coordinate an effective and efficient response, is seriously lacking in specific areas. As the concept of public safety and security becomes infused into the routine practices of government security forces and the everyday life of citizens, field commanders and decision makers will have to significantly benefit from the crisis situation management "superiority" that GIS provides. Field commander and decision makers of security forces should understand and formulate action plan necessary to fully realize this technology and its capabilities to make the management decisions essential to implement nationwide.

Accurate and comprehensive data is vital for any management information system. 80-90% of the government "Big Data" is well referenced to its geometric location as a key feature. It is critical that as a nation we take necessary actions to assure that strategic spatial information interwoven with public safety and security, particularly geospatial information assets are created, maintained for currency, accuracy, readily available and are interoperable to those who need them most.

Although field commanders and decision makers engaged in public safety and security also requires much of the same basic real-time or current spatial information needed for their uses and applications.

Figure 1- Operational Map

With past and recent undesirable events, it has been well unspoken that it must be immediately and comprehensively available to field commanders and decision makers at all levels.

This is to ensure:

- Implementation of a comprehensive National Spatial Data Infrastructure (NSDI)
- Interoperability of the systems that process geospatial Information.
- A greed common processes to collect, manage, and disseminate geospatial information.