ESTIMATION L-DOPA CONTENT OF *Mucuna pruriens* SEEDS BEFORE AND
AFTER PURIFICATION

MIROSH DINUSHA PARANAGAMA JAYASUNDARA

Submitted in partial fulfillment of the requirement
for the award of the degree of

MASTER OF SCIENCE IN INDUSTRIAL UTILIZATION OF MEDICINAL
AND AROMATIC PLANTS

of the

UNIVERSITY OF SRI JAYAWARDENEPURA

SRI LANKA

2010
DECLARATION

I do hereby declare that the work reported in this project report/thesis was exclusively carried out by me under the supervision of Prof. Ajith Abeysekera. It describes the result of my own independent research except where due reference has been made in the text. No part of this project report/thesis has been submitted earlier or concurrently for the same or any other degree.

Date: 03.05.2010

Signature of the Candidate

Certified by:

1. Supervisor (Name): ___________________________ Date: ________________
 (Signature): ___________________________

2. Co-Supervisor (Name): ________________________ Date: ________________
 (Signature): ___________________________
ABSTRACT

In Ayurvedic medical system “Cowhege” (*Mucuna pruriens* Linn) belonging to the family Fabaceae is used for male sexual disorders since ancient time. The plant’s efficacy in treating sexual disorders has been documented in ayurveda. As mentioned in ayurvedic texts *Mucuna pruriens* seeds are mainly used as the medicinal component. The texts have also mentioned that these seeds should undergo a purification process before they are used as drugs. During the purification seeds are boiled with cow’s milk and seed coats and pumule are removed. A vast number of chemical compounds can be found in these seeds. The main chemical compound which helps to improve male fertility is 3, 4-dihydroxy phenylalanine (L-DOPA)

During my research I attempted to determine L-DOPA content of the seeds before and after purification. Pure L-DOPA was isolated from Syndopa tablets using crystallization method. TLC was performed on ethanol extract of the seed samples. Ethanol extract of pure L-DOPA was prepared as a dilution series and TLC was performed. (Solvent system: n-Butanol-Acetic acid-Water 4:1:1). TLC results of seed samples were compared with TLC results of pure L-DOPA dilution series, by using Eye Estimation method.

Concentration of unpurified sample was approximately between, 42 g/l and 54 g/l. Concentration of purified sample was approximately between, 18 g/l and 30 g/l.

According to the results of this study it was revealed about 50% of L-DOPA is reduced during the purification process.
ACKNOWLEDGEMENT

It is with great pleasure that I place on record my deepest gratitude to my supervisor Prof. A. M. Abeysekera, Dean, faculty of Applied science, university of Sri Jayewardenepura, Nugegoda, for his invaluable advice and guidance provided throughout the study and for giving the needed inspiration and encouragement to successfully complete this project.

I wish to thank Dr. Champa Jayaweera, Co-supervisor, Lecturer, faculty of Applied science, university of Sri Jayewardenepura, Nugegoda, for the support given during literature review and carrying out experiments.

I also express my sincere thanks to Prof. S.I.Samarasinghe, Course coordinator, lecturer, department of Chemistry, university of Sri Jayewardenepura, Nugegoda, for giving support to carry out all the experiments and providing encouragement to successfully complete this project.

I must record my special thanks Dr. T.M.S.G. Thennakoon, Visiting lecturer, faculty of Applied science, university of Sri Jayewardenepura, Nugegoda, who taught me about the densitometer and how to operate the machinery.

I also express my sincere thanks Dr.A.M.J. Wanshapala, Lecturer, department of Food science, university of Sri Jayewardenepura, Nugegoda, for giving me support to find out literature.

I wish to express my sincere thanks Mr. R.M.S.R Jayawardena and all academic and non academic staff at department of Chemistry, university of Sri Jayewardenepura, Nugegoda, who gave support during laboratory work and for the completion of the project report.
I wish to express my heartfelt gratitude for my parents and my family who have been a source of encouragement throughout the study.

Finally, I would like to thank all others who helped me in numerous ways to make this study a success.
Table of Contents

Declaration ii
Abstract iii
Acknowledgment iv
Table of contents vi
List of Tables viii
List of Figures ix
List of Abbreviations x

CHAPTER 1 – INTRODUCTION 01

1.1. *Mucuna pruriens* Linn. (Family FABACEAE) 02

1.1.1 Medicinal properties of *Mucuna pruriens* seeds 05
1.1.2 Therapeutic evaluation of seed 06
1.1.3 Pharmacognosy of seed 06
1.1.4 Chemical and physical constituent of

Mucuna pruriens seed 06

1.2 Infertility 08

1.2.1 Ayurvedic concept of infertility 08
1.2.2 Modern concept on infertility 10
1.2.3 Male infertility 12

1.3 Shodana (Purification) 14

1.3.1 Purification of *Mucuna pruriens* seeds 16
1.4 Levodopa 17
1.5 Cow’s milk 18
1.6 Previous Studies 20

CHAPTER 2 - METHODOLOGY
2.1 Isolation of L-Dopa 23
2.2 Sample collection 23
2.3 Purification of seeds 23
2.4 Preparation of sample extracts 24
2.5 Preparation of dilution series 25

CHAPTER 3 - RESULT AND DISCUSSION 27

CHAPTER 4 - CONCLUSION 30

CHAPTER 5 - SUGGESTION FOR FURTHER STUDIES 31

REFERENCES 32

Appendix 1

Instrument and Chemicals 35
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Composition of Cow’s milk</td>
<td>19</td>
</tr>
<tr>
<td>2.1</td>
<td>Dilution series of pure L-Dopa</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>Sample concentration of dilution series</td>
<td>26</td>
</tr>
</tbody>
</table>
List of figures

Figure 1.1 Inflorescence of *Mucuna pruriens* plant 03
Figure 1.2 Pods of *Mucuna pruriens* plant 04
Figure 1.3 Seeds of *Mucuna pruriens* 04
Figure 1.4 Chemical structure of Levodopa 17
Figure 2.1 Boiling of *Mucuna pruriens* seeds with Cow’s milk 24
Figure 2.2 Purified *Mucuna pruriens* seeds with peel 24
Figure 3.1 TLC results of the samples (under 254 nm) 27
Figure 3.2 TLC results of the dilution series (under 254 nm) 28
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLC</td>
<td>Thin Layer Chromatography</td>
</tr>
<tr>
<td>L-Dopa</td>
<td>Levodopa</td>
</tr>
<tr>
<td>R_f</td>
<td>Rate of flow</td>
</tr>
<tr>
<td>HPTLC</td>
<td>High-performance thin layer chromatography</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra violet</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>Kcal</td>
<td>Kilo-calorie</td>
</tr>
<tr>
<td>KJ</td>
<td>Kilo-joule</td>
</tr>
<tr>
<td>mg/ml</td>
<td>milligrams per milliliter</td>
</tr>
<tr>
<td>g/l</td>
<td>grams per liter</td>
</tr>
</tbody>
</table>
Chapter 1

INTRODUCTION

Indigenous herbs are used as remedies against various diseases in the traditional system of medicine or in ethno medical practices. For the past few decades compounds from natural sources have gained importance, because of the vast chemical diversity that they offer. This has lead to phenomenal increase in the demand for the herbal medicine in the last two decades and a need to ensure the quality, safety and efficacy of the herbal drugs. Phyto-chemical evaluation is one of the tools for the quality assessment, which includes preliminary phyto-chemical screening, chemo profiling and maker compound analysis using modern analytical techniques.

Mucuna pruriens is commonly known as “the cowhage” or “velvet” bean and “atmagupta” in India. It is a climbing legume endemic in India and also in other parts of tropics including Central and South America. In ayurvedic system of medicine, *Mucuna pruriens* is used for the management of male infertility, nervous disorders and also as an aphrodisiac. Different preparations of the seeds are also used for the management of ageing, rheumatoid arthritis, diabetes, male infertility and nervous disorders. *Mucuna pruriens* seed powder contain high amount (25%) of L-DOPA, which is a neurotransmitter precursor. Therefore this compound was used as a maker compound during this research. In addition to that levodopa is also the main chemical, which helps to improve male fertility.

During this research the levodopa content was determined in both unpurified and purified seeds. Since pure levodopa is not available in Sri Lanka, Syndopa, a mixture of
levodopa and carbidopa was used and levodopa was isolated by using crystallization method.

Research has not been performed on the chemical changes which occur due to the purification process. This research was performed to analyze if any chemical change take place during purification by analyzing the levodopa content in the unpurified and purified *Mucuna pruriens* seeds.

A large number of chemicals can be found in the seeds, therefore it will be very complicated and complex to check each and every chemicals change. Hence one major chemical compound, levodopa, was used as the maker compound.

1.1 *Mucuna pruriens* Linn. (Family FABACEAE)

Some synonyms, morphological description and some ayurvedic concepts of *Mucuna pruriens* are mentioned below.

Synonyms

<table>
<thead>
<tr>
<th>Language</th>
<th>Synonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinhala</td>
<td>Vanduru me</td>
</tr>
<tr>
<td>Sanskrit</td>
<td>Kapikachchu, Atmagupta, Kandura, Vyanga.</td>
</tr>
<tr>
<td>English</td>
<td>Common cowitch, Cowhage,</td>
</tr>
<tr>
<td>Tamil</td>
<td>Punaikkali, Amudari.</td>
</tr>
<tr>
<td>Hindi</td>
<td>Kaunch, Kevach, Kevanch.</td>
</tr>
<tr>
<td>Urdu</td>
<td>Kavancha</td>
</tr>
</tbody>
</table>
Figure 1.1 Inflorescence of the *Mucuna pruriens* plant

Mucuna pruriens grows in wild areas of the Himalayan foothills and the plains of Punjab to Sri Lanka. The plant is a slender climbing annual. The leaves are 15-22 cm long, leaflets 7-12 cm long, ovate rhomboid membranous and the petiole is 6-11 cm long. The inflorescence is racemes. The corolla is purplish. The inflorescence of *Mucuna pruriens* is shown in fig 1.1. The pod is 5-7 cm long, bristly red curved or golden colored. Used parts of *Mucuna pruriens* are roots, leaves, seeds, and bristles.\(^2\)

Glands are presented on bristles. The pods of *Mucuna pruriens* are showed in fig 1.2. The seeds are bean shaped, white black or spotted and about 1 cm in diameter. The picture of seeds is shown in fig 1.3.\(^3\)
Figure 1.2 Pods of *Mucuna pruriens* plant

Figure 1.3 Seeds of *Mucuna pruriens*
Some of the Ayurvedic properties of *Mucuna pruriens* are given below. [4]

<table>
<thead>
<tr>
<th>Rasa</th>
<th>Madhura, Tikta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guna</td>
<td>Guru, Snigdha</td>
</tr>
<tr>
<td>Veerya</td>
<td>Ushna</td>
</tr>
<tr>
<td>Vipaka</td>
<td>Madhura</td>
</tr>
<tr>
<td>Prabhava</td>
<td>Shukrala, Vajikara</td>
</tr>
<tr>
<td>Rogaghnata</td>
<td>Klaibya, Krimi, Yonishaithilya, Daurbalya</td>
</tr>
<tr>
<td>Karma</td>
<td>Brinhana, Vajikara, Vrishya, Balya, Vatahari, Krimighna, Mootrala</td>
</tr>
</tbody>
</table>

1.1.1 Medicinal properties of *Mucuna pruriens* seeds[4]

Some of the medicinal properties of *Mucuna pruriens* seeds are stated below.

Astringent

Laxative

Anathematic

Alexipharmic and tonic

Diuretic

Anti-helmenthic

Aphrodisiac

Strengthens the body

Increase virility

Used in gynaecological disorders