INCREASE OF SHELF OF DECOCTION BY PASTEURIZATION AND STERILIZATION (TRIPALA QUATHA)

by

W. Sunethra Keriyawasam

M.Sc.

2006

INCREASE OF SHELF OF DECOCTION BY PASTEURIZATION AND STERILIZATION (TRIPALA QUATHA)

by

W. Sunethra Keriyawasam

Thesis submitted to the University of Sri Jayewardenepura for the award of degree of Master Science in food Science & Technilogy in 2006

Declaration

The work described in this was carried out by me under the supervision of prof: A. Bamunuarachchi and Dr. K.K.D.S. Ranaweera and a report on this has not been submitted in whole or in part to any other institution for another Degree / Diploma

W. S. Caipavasam

W. Sunethra Keriyawasam

We certify that the above statement made by the candidate is true and that thesis is suitable for submission to the University for the purpose of evaluation.

Signature

Prof.ARTHUR F "UNUARACHCHI

Signature

Dr. K. K. D. S. Ranaweera
Co-ordinator / Food Science and Technology Programme
University of Sri Jayewardenepura
Gangodawila, Nugegoda.
Sri Lanka.

Abstract

Almost all ayurvedic drugs are of herbal nature and make significant contribution in many fields including food technology. After harvesting, raw materials may undergo spoilage due to metabolic changes, mechanical injuries pest attacks etc. Spoilage can also be resulted soon after the processing or due to exposure of products to the environment.

Similarly decoctions can be spoiled after 2-3 days from the preparation date becoming sour in taste. These preparations can be of different quality and may be harmful for patients.

Therefore, finding a method or a technique which can be used to extend the shelf life of these products is of primary significance. A study was carried out to investigate factors affecting the spoilage of thripala, one of the most popular decoctions prescribed for many health complications. In this study, a special emphasis was given to shape of containers, cleanliness of raw materials and different heat treatments in order to minimize the spoilage.

Hence, the decoction was prepared in good hygienic conditions and was hot filled into glass bottles which were subsequently sterilized by steam.

The drug can be preserved for one-month period when the bottles were filled by hot filling method. The decoction is heated to 95 0 C and filled into the sterilized narrow mouthed bottles keeping the temperature at 95 0 C and sealed. Under proper sanitary storage conditions these bottles can be stored for more than two weeks. These sealed bottles subjected to steaming have extended the shelf life for one month.

Acknowledgement

I am mostly grateful to my supervisor Arthur Bamunuarachchi and Dr. K.K.D.S. Ranaweera of the Department of Food Science and Technology, University of Sri Jayawardanepura for his invaluable supervision, guidance and encouragement throughout this project. I also wish to express my sincere thanks to Dr. K.K.D.S. Ranaweera, the head of the Department of Food Science and Technology, University of Sri Jayawardenapura for his interest and valuable assistance in the chemical and microbiological analysis through out this research project.

My gratitude also goes to Mrs. Rupika perera Research Officer, and Mrs. Indira Wickramasinghe of the Department of Food Science and Technology University of Sri Jayawardanapura for the valuable technical guidance given to me throughout this project.

I would also like to thank Mr. Sisira Weerasinghe; Technical Officer of the Department of food Science and Technology, University of Sri Jayawardanapura for the valuable Technical assistance.

I remember my colleagues and all non academic staff members of the Department of Food Science and Technology, with gratitude for their immeasurable assistance to carry out this project successfully.

Finally my remembrance goes to my husband, Lalantha and my Son for continued support and encouragement during this venture

Table of Content

Abstract Acknowledgement Table of Content List of Figures	Page (i) (ii) (iii) (iv)
List of Tables	(v)
CHAPTER - 01	
Introduction	1
CHAPTER - 02	
Literature Review 2.1 Phyllanthus emblica	3
2.1.1 Classical Names	3
2.1.1.1 Vernacular Names	5
2.1.2 Botanical Description	5
2.1.3 Distribution	5
2.1.4 Parts Used	5
2.1.5 Action And Uses	5
2.1.6 Ayurvedic Properties	6
2.1.7 Pharmacognosy	7
2.1.8 Fresh Fruits	7
2.1.9 Dried mature fruit	8
2.1.10 Physical Constants	8
2.1.11 Chemical Constituents	9
2.1.12 Pharmacological Activities	9
2.1.13 Toxicology	9
2.2 Terminalia bellirica	9
2.2.1 Classical Names	9
2.2.1.1 Vernacular Names	11
2.2.2 Botanical Discription	11
2.2.3 Distribution	11

2.2.4 Parts Used	11
2.2.5 Actions And Uses	11
2.2.6 Ayurvedic properties	12
2.2.7 Pharmacognosy	12
2.2.8 Physical constants	13
2.2.9 Chemical Constituents	13
2.2.10 Pharmacological Activities	13
2.2.11 Toxicology	13
2.2.12 Substitutes And Adulterants	13
2.3 Terminalia Chebula	14
2.3.1 Classical Names	14
2.3.1.1 Vernacular Names	14
2.3.2 Botanical Description	14
2.3.3 Distribution	14
2.3.4 Parts Used	14
2.3.5 Action And Uses	16
2.3.6 Ayurvedic properties	16
2.3.7 Pharmacognocy	17
2.3.8 Physical constants	17
2.3.9 Chemical Constituents	18
2.3.10 Pharmacological Activities	18
2.3.11 Toxicology	18
2.3.12 Substitutes And Adulterants	18
2.4. Traditional Decoction	19
Heat Treatment	19
2.5 Thermal Processing of Liquid Foods	19
2.5.1. Pasteurization	19
2.5.2. Pasteurization by Retort	20
2.5.3. Moist Heat Steam under Pressure Autoclave	21
2.5.4 Dry Heat Hot air Sterilization	23

2.5.5 Requirement Of Quality Control Of Drug	23
2.5.6 Quality Standards And Grades	24
2.6.1. Cleaning and washing	24
2.6.2. Containers	25
2.6.3. Storage	25
2.6.4. Labeling	26
CHAPTER - 03 Experiment & Methodology	27
Methodology	
3.1 Method	27
3.2. Preparation of decoction (Quatha)	28
3.2.1. Equipments	28
3.2.2. Method	28
3.2.2.1 Sorting-	29
3.2.2.2 Storage Process	29
3.2.2.3 Cleaning and Washing-	29
3.2.2.4 Crushing -	29
3.2.2.5 Weighing -	29
3.2.2.6. Method of Preparation of decoction -	30
3.2.2.7. Filtration	30
3.2.2.8. Pasteurization & sterilization	30
3.2.2.9. Sealing	30
3.2.2.10. Steaming	31
3.2.2.11. Labeling & Storaging	31

Experiment

3.3 Physico Chemical and biological analysis of	
Raw material	32
3.3.1 Preparation of sample for analysis	32
3.3.2. Determination of loss on drying (at 105 °C)	32
3.3.3. Determination of total Ash	32
3.3.4. Determination of Water insoluble Ash	33
3.3.5. Determination of Water soluble Ash	33
3.3.6. Determination of Acid insoluble Ash	34
3.3.7. Determination of alcohol soluble extractive	34
3.3.8. Determination of water soluble extractive	35
3.3.9. Determination of Petroleum ether soluble extractive	35
3.3.10. Determination of Chloroform soluble extractive	36
3.3.11. Determination of Volatile oil content	36
3.4. Experiment I -: Determine the bitter compounds in	37
Raw materials (Aralu, Bulu, Nelli)	
3.4.1 Materials	37
3.4.2 Method	37
3.5 Experiment II -: Determination of Alkaloid compounds	38
in Raw material (Aralu, Bulu, Nelli)	
3.5.1 Method	38
3.6. Physico Chemical and biological analysis of Product	39
3.6.1. Determination of moisture content experimental	39
3.6.2. Determination of total ash	40
3.6.3. Determination of PH value of decoction	41
3.6.3.1. Principle	41
3.6.3.2. Materials	41

3.6.3.3. Procedure	41
3.6.4. Determination of sugar contant.	41
3.6.4.1 Method for the determination of total sugar content	42
3.6.4.2 Method for the determination of Reducing sugar content	43
3.6.5. Determination of soluble solids contents.	43
3.6.6 Determination of Specific gravity	44
3.6.7 Determination of refractive index	44
3.6.8. Determination of Alcohol content	44
3.7. Determination of microbial growth.	45
3.7.1 Experiment I (Step I)	45
3.7.2 Microbiology media Preparation	45
3.7.3 Experiment I (Step II)	47
3.7.4 Incubation	49
Experiment I (Step III)	50
3.7.5. Gram Stain	50
3.7.6 Experiment II	51
3.7.7 Experiment III	51
3.8. Storage Condition	52
CHAPTER 4	54
Results & Discussion	
4.1 Plant facilities and processing requirements.	54
4.2 Sanitary facilities & control	55
4.2.1 Control separations	55
4.2.2 Sanitary facilities	55
4.3 Preparation & processing	55
4.4 Chemical Analysis of Raw Materials	56
4.5 Determine the bitter compounds in Raw materials	57
Aralu, Bulu, Nelli	
4.6 Determination of Alkaloid compounds in Raw material	58
(Aralu, Bulu, Nelli)	

4.7 Oven Drying Method	59
4.8 Ash content of Thripala Quatha	60
4.9 Ash Content	60
4.10 pH value of Decoction	61
4.11 Total sugar content	61
4.12. Reducing Sugar	62
4.13 Soluble Solids Contents	62
4.14 Specific gravity	63
4.15 Refractive index	63
4.16 Alcohol content	64
4.17 Determination of Microbial growth	64
4.17.1. Experiment I (Step I)	64
4.17.2. Experiment I (Step II)	65
4.17.3. Experiment I (Step III)	66
4.17.3.1. Experiment I (Step III)	67
4. 18 . Experimental II	67
4. 19 . Experimental III	68
4.20. Storage candition	69
Conclusion	74
References	

List of Figures	Page
FIG - 01- Raw materials (Aralu, Bulu, Nelli)	03
FIG - 02- Amalaki - Phyllanthus embelica Linn. (Nelli)	04
FIG - 03- Terminalia bellirica	10
FIG- 04- Terminalia chebula (Aralu)	15
FIG - 05- Autoclave	22
FIG - 06- Auto clave	31
FIG - 07- Determine the bitter compounds in Raw materials	37
FIG - 08- Determine of Alkaloid compounds in Raw material	38
FIG - 09- Colonies and mould could be seen after 24-48 hour	48
FIG - 10- Incubation	49
FIG - 11- Storage Condition	53
FIG - 12 & 13- bitter compounds in Raw materials	57
FIG - 14 & 15- Alkaloid compounds in Raw material	58
FIG - 16- Microbiology media Preparation	64
FIG - 17 & 18- Colonies and mould could be seen after 24-48 hours	65
FIG - 19- Gram Stain	66
FIG - 20- Cell, which separated from FIG 19	67
FIG - 21- Agar Plates	68
FIG - 22- 750 ml bottle at 45 °C	70
FIG - 23- Mould and growth.	71
FIG - 24- 200ml Bottle	71
FIG - 25 & 26- View of mould and growth.	72
FIG - 27 & 28- 200ml & 250 ml Bottle	73

List of Tables	Page
Table - 2.1- Temperature of steam under pressure	21
Table - 3.1- Macconkey Broth test	51
Table - 4.1- Chemical Analysis of Raw Materials	56
Table - 4.2- Oven Drying Method	59
Table - 4.3 - Ash content of Thripala Quatha	60
Table - 4.4- Ph value of Decoction	61
Table - 4.5- Soluble Solids Contents	62
Table - 4.6- Specific gravity	63
Table - 4.7- Refractive index	63

CHAPTER - 01

Introduction

Sri Lanka is one of the developing countries which has poorly developed manufacture in pharmaceutical both Ayurvedic and allopathic system of medicine. Therefore the country requirement neighboring countries and mainly met by the for this purpose Sri Lanka's foreign exchange is lost considerably. This can be reduced if the drug manufactures. Duty specially the traditional drug manufacturer rule tends and applies appropriately devoted modern process technology.

Ayurveda is one of the oldest systems of the world. Ayurvedic physicians preferably like to dispense drugs prepared by their own hands. They do not rely upon the products manufactured by pharmaceutical industries. Rapid civilization, explosive growth rate of population, massive deforestation has made the physicians handicap and to depend upon pharmaceutical industries. Due to commercial orientation and increasing demand of natural products few unethical products pharmacies are preparing which result an embarrassing position for physicians and patients. In order to overcome these problems there is a need to implement certain standards for these natural products, which are easily adaptable and implementable to overcome the crisis.

The process of manufacturing medicines from raw ingredients to finished products requires a degree of control that is probably unequalled in any other industry. The role of the microbiological specification is to provide a standard for pharmaceutical preparation to ensure its safety for use. The microbiological controls for non-sterile and sterile product are different. The microbiological control has the same importance as the physical and chemical quality control. To gain a proper understanding of the source of microbial contamination, it is necessary to control microbes stages of manufacturing and for each To identify various stage.