MANUFACTURING OF FROZEN VEGETABLES

By

Roshani Henadeera

Thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Science

In

Food Science and Technology

The faculty of Graduate studies University of Sri Jayewardenepura Sri Lanka

2006

DECLARATION

The work described in this thesis was carried out by me under the supervision of Professor Arthur Bamunuarachchi and Dr. K.K.D.S. Ranaweera and a report on this thesis has not been submitted to any university for another degree and has not been presented or accepted in any previous application for a degree.

Roshani Henadeera

We certify that the above statement made by the candidates is true and that this thesis is suitable for submission to the university for the purpose of evaluation.

(Signature)

28/1/06

(Date)

Supervisor Prof. Athur Bamunuarachchi CO-ORDINATOR FOOD SCIENCE & TECHNOLOGY PROGRAMS, DEPARTMENT OF FOOD SCIENCE & TECHNOLOGY, UNIVERSITY OF SRI JAYEWARDENEPURA SRI LANKA

(Signature)

28/11-2006

(Date)

Supervisor Dr. K.K.D.S. Ranaweera HEAD, DEPARTMENT OF FOOD SCIENCE & TECHNOLOGY, UNIVERSITY OF SRI JAYEWARDENEPURA SRI LANKA

Affectionately dedicated

То

My loving Parents

And

Teachers

CONTENTS

		PAGE
Conter	nts	i
List of	tables	v
List of	figures	vii
Abbre	viations	viii
Ackno	owledgement	ix
Abstra	lict	x
Chapt	ter 01	
	Introduction	1
Chap	ter 0 <mark>2</mark>	
	Literature survey	3
2.1	Botany of Ipomoea aquatica (Kankun) and Alternanthera sessilis	
	(Mugunuwenna)	3
2.1.1	General description	3
2.1.2	Botanical description	3
2.1.3	Nutritional properties	4
2.1.4	Utilization and benefits	6
2.2	Selecting suitable material for freezing	6
2.3	Washing	7
2.4	Blanching	7
2.5	Packaging	8
2.6	Freezing	10
2.6.1	History of freezing	10
2.6.2	Freezing general view	11
2.6.2.	1 Fundamental of freezing technology	11
2.6.2.	2 Refrigerants	12
2.6.3	Distinction between refrigeration and freezing	12
2.6.4	What is freezing	13
2.6.4	.1 Freezing systems	13

2.6.4.	1.1 Contact with cold air/surface that is cooled by closed-loop		
	recirculation freezing mechanism		
2.6.4.1.1.1 Cold air systems		14	
2.6.4.1.1.2 Direct surface contact systems			
2.6.4.	1.2 Cryogenic systems	16	
2.6.4.	1.3 Immersion freezing systems	16	
2.6.5	Freezing methods	17	
2.6.5.	1 Slow freezing	17	
2.6.5.	2 Fast freezing	17	
2.6.6	Major changes happening at freezing	18	
2.6.7	Effects of freezing and thawing	21	
2.6.7.	1 Thawing	22	
2.6.8	Effects of frozen storage	22	
2.6.9	Other changes happening at freezing	24	
2.7	Quality evaluation	27	
Chap	ter 0 <mark>3</mark>		
	Experimental	29	
3.1	Determination of average weight of Ipomoea aquatica and		
	Alternanthera sessilis bunches	29	
3.2	Preliminary processing of Ipomoea aquatica and		
	Alternanthera sessilis	29	
3.2.1	Cleaning and washing	29	
3.2.2	2.2 Determination of average weight of <i>I. aquatica</i> and <i>A. sessilis</i>		
	bunch's edible portion	29	
3.2.3	.2.3 Cutting		
3.3	Determination of suitable blanching method for I. aquatica and		
	A. sessilis	30	
3.3.1	3.1 Determination of adequate time of hot water blanching		
3.3.2	Determination of adequate time of steam blanching	31	
3.3.3 Determination of losses during blanching		32	
3.3.3.1 Determination of loss of vitamin C at blanching 32			

3.3.3.2	Determination of chlorophyll content losses at blanching	33
3.3.3.3	Determination of carotene content losses at blanching	35
3.4	Preparation of I. aquatica and A. sessilis for blanching	36
3.5	Weighing, Preparation of packets, Filling and Sealing	37
3.6	Freezing	38
3.7	Analytical studies on frozen I. aquatica and A. sessilis	39
3.7.1	Determination of the microbial quality of blast frozen I. aquatica	
	and A. sessilis by total bacterial count (just after freezing)	39
3.7.2	Storage studies of frozen I. aquatica and A. sessilis	40
3.7.2.1	Determination of vitamin C content variation	40
3.7.2.2	Determination of chlorophyll content variation	41
3.7.2.3	Determination of carotene content variation	41
3.7.2.4	Determination of drip loss during frozen storage (-18°C)	41
3.7.2.5	Determination of microbial quality variation during frozen storage	42
3.7.2.6	Sensory evaluation	42
Chapt	er 04	
	Results and discussion	45
4.1	The determination of average weight of <i>I. aquatica</i> and	
	A. sessilis bunches	45
4.2	Preliminary processing of I. aquatica and A. sessilis	45
4.2.1	The determination of average weight of I. aquatica and	
	A. sessilis bunch's edible portion	46
4.2.2	Cutting	46
4.3	Determination of suitable blanching method for	
	I. aquatica and A. sessilis	47
4.3.1	Determination of adequate hot water blanching time	47
4.3.2	Determination of adequate steam blanching time	47
4.3.3	Determination of losses during blanching	48
4.3.3.1	Determination of losses of vitamin C at blanching	48
4.3.3.2	2 Determination of chlorophyll content loss at blanching	50
4.3.3.3	B Determination of carotene content loss at blanching	51

4.4	Preparation of I. aquatica and A. sessilis for freezing	53
4.4.1	Blanching for freezing	53
4.4.2	Weighing	53
4.4.3	Packaging	53
4.5	Freezing	53
4.6	Analytical studies on frozen I. aquatica and A. sessilis	54
4.6.1 Determination of the microbial quality of blast frozen <i>I. aquatica</i>		
	and A. sessilis by total bacterial count (just after blast freezing)	54
4.6.2	Storage studies of frozen I. aquatica and A. sessilis	54
4.6.2.1	Determination of vitamin C content variation	54
4.6.2.2	Determination of chlorophyll content variation	57
4.6.2.3	Determination of carotene content variation	60
4.6.2.4	Determination of drip loss during frozen storage (-18°C)	65
4.6.2.5	Determination of microbial quality variation during frozen storage	69
4.6.2.6	Sensory evaluation	72
Chapt	er 05	

Conclusion	80
References	82
Appendix 01	85
Appendix 02	86
Appendix 03	87
Appendix 04	88
Appendix 05	90
Appendix 06	91
Appendix 07	93
Appendix 08	94

LIST OF TABLES

		Page
1	Nutritional values of Ipomoea aquatica	5
2	Nutritional values of Alternanthera sessilis	5
3	Average weight of a Alternanthera sessilis bunches	45
4	Average weight of a <i>Ipomoea aquatica</i> bunches	45
5	Average weight of the edible portion of <i>Alternanthera sessilis</i>	
	bunch's	46
6	Average weight of the edible portion of Ipomoea aquatica	
	bunch's	46
7	Time taken for hot water blanching of A .sessilis	47
8	Time taken for hot water blanching of I. aquatica	47
9	Time taken for steam blanching of A .sessilis	47
10	Time taken for steam blanching of <i>I. aquatica</i>	47
11	Standard curve data for vitamin C	48
12	Loss of vitamin C at blanching of A .sessilis	48
13	Loss of vitamin C at blanching of <i>I. aquatica</i>	50
14	Standard curve data for chlorophyll	50
15	5 Loss of chlorophyll at blanching of A .sessilis	51
16	5 Loss of chlorophyll at blanching of <i>I. aquatica</i>	51
1	7 Loss of carotene at blanching of A .sessilis	51
18	8 Loss of carotene at blanching of <i>I. aquatica</i>	53
19	9 Total bacteria count of the non-blanched samples (just after b.f.)	54
2	0 Total bacteria count of the steam-blanched samples (just after b.f.)	54
2	1 Variation of vitamin C of blast frozen A .sessilis	55
2	2 Variation of vitamin C of blast frozen I. aquatica	55
2	3 Variation of vitamin C of steam blanched slow frozen A .sessilis	56
2	4 Variation of vitamin C of steam blanched slow frozen I. aquatica	56
2	5 Variation of chlorophyll content of blast frozen A .sessilis	57
2	6 Variation of chlorophyll content of blast frozen I. aquatica	57

27	Variation of chlorophyll content of steam blanched slow frozen	
	A .sessilis	58
28	Variation of chlorophyll content of steam blanched slow frozen	
	I. aquatica	58
29	Variation of carotene content of blast frozen A .sessilis	60
30	Variation of carotene content of blast frozen I. aquatica	62
31	Variation of carotene of steam blanched slow frozen A .sessilis	62
32	Variation of carotene of steam blanched slow frozen I. aquatica	62
33	Drip loss analysis of A .sessilis	65
34	Drip loss analysis of I. aquatica	67
35	Variation of microbial quality during frozen storage	
	(Result for the after two month sample)	69
36	Tabulated category scores for hedonic test for Mugunuwenna	72
37	Tabulated category scores for hedonic test for Kankun	76

LIST OF FIGURES

		Page
1	Ipomoea aquatica plant with flower	85
2	Alternanthera sessilis plant	85
3	Fruits of Alternanthera sessilis	86
4	Ipomoea aquatica flowering plant and fruit	86
5	Push through tunnel freezing systems	88
6	Fluidization process of a fluidized-bed freezer	88
7	Typical horizontal plate freezer	89
8	Drum freezer drive mechanism	89
9	Time-temperature data during freezing	19
10	Critical zone of temperature on freezing	20
11	Effects of freezing on plant tissues; (a) slow freezing (b) fast freezing	23
12	Effects of storage temperature on sensory characteristics	25
13	Structure of chlorophyll, carotene (β -carotene) and other pigments	90
14	(a) The normal slow freezer used	91
	(b) The blast freezer used (model BF 710)	91
15	Presenting the prepared A.sessilis as a Mallum for the sensory evaluation	75
16	Presenting the prepared I.aquatica as a Fried Kankun for the	
	sensory evaluation	79
17	Standard curve data for vitamin C	49
18	Standard curve data for Chlorophyll	52
19	Variation of vitamin C during storage	59
20	Variation of Chlorophyll during storage	61
21	Variation of Carotene during storage	63
22	Drip loss % v/w	
	(a) Alternanthera sessilis	66
	(b) Ipomoea aquatica	68
23	The spectrophotometer used	92
24	Polythene sealer used	92
25	Prepared samples before blast freezing	93
26	Prepared samples to determining the cooling curve	93

LIST OF ABBREVIATIONS

1. 2, 6-DCP	= 2, 6-Dichlorophenol-Indophenol
2. Internet.	= Taken from Internet Reference section
3. mth	= Months
4. mins	= Minutes (time)
5. std	= Standard
6. S.B	= Steam Blanched
7. N.B.	= Non Blanched
8. H.W.B.	= Hot Water Blanched
9. B.F./bf	= Blast Frozen
10. S.F. /sf	= Slow Frozen
11. d	= Diameter
12. App1	= Appendix-01
13. App2	= Appendix-02
14. App3	= Appendix-03
15. App4	= Appendix-04
16. App5	= Appendix-05
17. App6	= Appendix-06
18. App7	= Appendix-07
19. App8	= Appendix-08

Acknowledgement

It is with pleasure that I express my affectionate and deeply felt gratitude to, advice, suggestion and given in numerous ways by my supervisors Prof. Athur Bamunuarachchi, Coordinator Food Science and Technology program, University of Sri Jayewardenepura and Dr. K.K.D.S. Ranaweera, Head of the Food Science and Technology Department, University of Sri Jayewardenepura.

I owe a deep debt of gratitude to Mr. Jagath Wansapala and Mrs. Indira Wicramasingha, Department of Food Science and Technology, University of Sri Jayewardenepura for the advice and support given me always.

I am greatly indebted to Mrs. Rupika Perera, Technical officer, Department of Food Science and Technology, University of Sri Jayewardenepura for given encouragement and guidance in numerous ways.

I offer my sincere appreciation and special thanks to Mr. Sisira Weerasinghe, Technical officer; Department of Food Science and Technology, University of Sri Jayewardenepura for give technical instruction and support to me during the tenure of my project.

I am grateful to Mr. Rupasingha, Laboratory Assistant; Department of Food Science and Technology University of Sri Jayewardenepura for supporting me always in my project work.

I wish to extend my thanks to Mr. Siripala Senadeera, Technical officer, Department of Chemistry, University of Sri Jayewardenepura for giving me chemicals and instruments throughout the project work.

I must acknowledge my debt to my friends for their support and encouragement given to me throughout the project work.

I offer my sincere appreciation and special thanks to my father who gave me assistance and constant encouragement to accomplish this project.

ix

Manufacturing of frozen vegetables

By

Roshani Henadeera, Prof. A. Bamunuarachchi, Dr.K.K.D.S. Ranaweera

ABSTRACT

Leafy vegetables being rich in vitamins and minerals are one of the major constituents of our main meals. But due to their busy life, consumers cannot have access to fresh commodities and refrigerated vegetables may lose most of these nutrients and attributed sensory qualities.

A study was carried out to manufacture blast-frozen **Kankun** (*Ipomoea aquatica*) and **Mugunuwenna** (*Alternanthera sessilis*), which could retain nutrients, as do their fresh counterparts.

After blanching by using different heat treatment methods these vegetables were packaged by using LDPE appropriate for blast-freezing conditions. Subsequently, the food samples were subjected to blast-freezing as well as slow freezing. The temperature at the centre of the blast frozen samples reached -28°C. These frozen vegetables were stored and then analysed for vitamin C, carotene, chlorophyll, pathogens and sensory properties including colour, flavour and texture periodically.

It was found that the duration of steam blanching adequate to inactivate peroxidase enzyme varies from species to other being 5 ½ minutes for **Kankun** and 1 minute for **Mugunuwenna.** As for hot water- blanching, these figures were 5 minutes and 30 second respectively.

However, among non-blanched, steam-blanched and hot water blanched vegetables, non-blanched samples were characterized by containing the highest contents of vitamin C and carotenes immediately after blast freezing. The reduction of these compounds in steam blanched has stopped while that of other samples continued longer. In addition, non-blanched blast-frozen samples were found to have less drip losses compared with steam blanched blast frozen; hot water blanched blast frozen and steam blanched slow frozen samples having the highest value. It may be possible to subject these vegetables to commercial scale blast- freezing.

CHAPTER-01

INTRODUCTION

Competition and development have become the main targets in the modern world. As a result the world is busier than ever before. As a matter of fact consumer time and devotion for food preparation from buying to consumption are being deliberately reduced to utilize more time in working places and to create leisure time. Especially as more and more women are working out side their homes, this trend is very common in developed countries and fast spreading to the developing countries as well.

Compared to meat and fruits, vegetable preparation for meals has been more time consuming and troublesome. Because of this reason demand for convenient, minimally and fully processed vegetables has been in the ascend. Consumers are looking for more convenient ways for food preparation.

People being particular about taste, often prefer to cook their own food rather than buying cooked foods. Therefore minimally processed foods are often preferred to fully processed foods.

Research and development on freezing of vegetables is being done all over the world mainly for western vegetables. Very less work has been found on the indigenous types of vegetables in Sri Lanka. As such, representing Sri Lanka's leafy vegetables, the domestically common "Kankun (*Ipomoea aquatica*) and Mugunuwenna (*Alternanthera sessilis*) were examined for the possibility of manufacturing it as a frozen vegetable. Blanching has been significant in vegetable freezing. Despite its beneficial effects, blanching can reduce the colour, flavour and texture of the vegetables. Determination of appropriate blanching time is crucial for all vegetables (Jayasekara, 2000). Among enzymes that could deteriorate vegetables, peroxidase is the most heat stable enzyme that cause off flavours, discolouration and textural damage (Jayasekara, 2000). Because of this reason, traditionally the blanching time determination is recommended to find the inactivation time of peroxidase enzyme for different blanching methods. Therefore