Spatial Distribution of Fluoride in Ground Water and Spread of Dental Fluorosis in Vavuniya South, Sri Lanka

By

W. M. A. V. Rajakarunanayake

Thesis Submitted to the Faculty of Graduate Studies
University of Sri Jayewardenepura for the Partial Fulfilment
of Masters of Science Degree in GIS and Remote Sensing on
20th March 2016

DECLARATION OF THE CANDIDATE

I do hereby declare that work described in this thesis was carried out by me under the supervision of Mr. C.L.K Nawarathna and Dr. H.M. Ranjith Premasiri, and report on this thesis has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

Date 20th March 2016

W.M.A.V.Rajakarunanayake

ACKNOWLADGEMENT

I am grateful for my supervisor Mr. C.L.K Nawarathna, Dean, Faculty of Humanities and Social Sciences, University of Sri Jayewardenepura. Whenever I was in a tight corner, he guided me.

My deep gratitude is offered to Dr. H.M. Ranjith Premasiri, Senior Lecturer, Department of Earth Resources, Engineering, University of Moratuwa. He guided me to think in terms of the chemical patterns of the earth.

I have greatly benefited from their guidance and encouragement in academic matters. They keenly followed my progress, pointed weaker areas and helped to overcome unexpected difficulties in the field research.

I thank Professor (Dr.) R.M.K. Ratnayake and, Mr. Prabath Malavige for all the support and guidance given to me throughout the M.Sc program in GIS and Remote Sensing. I am grateful to all the lectures who shared their knowledge with us in this program.

Emirates Professor of Geology C. B. Disanayake, Dr. C.S Weeraratna, former Professor of Soil and Water and Dr. Tanuja Aryinanada for their guidance and sound advice. They shared their valuable experience and pointed out questionable areas.

Mr. M.S. Janaka, Divisional Secretary and Mrs. T. Manokaraj, Assistant Director of Planning, Vavuniya granted me the official permission to conduct the field research. Mrs Manokaraja helped me beyond the call of her duty.

Dr. Sajeevan Sivaguru, Dental Surgeon/Managing Director, International Dental Care, Dr. Jeevanthan, Regional Dental Surgeon of Vavuniya and Dr. (Mrs.) P. Senthil Kanthan, Senior Dental Surgeon and Dr Jesli, Dental Surgeon; Base Hospital Vavuniya were very helpful. They sacrificed their time to patiently explain the situation of Dental Fluorosis and their professional experience in the district.

Dr. Amila Piyathilaka for taking time to question my questioner sharply. Mr. Roshan Dalababandara provided a comfortable unoccupied house at Anuradhapura to use during my research period. I thank the Water Resources Board for the Chemical Test Report.

All the support given by the Vavuniya staff of the Lanka Rainwater Harvesting Forum is greatly appreciated.

Mr. Asoka Dias and Mrs. Manouri Dias helped me by suggesting necessary software and always supporting for my education and in personal life from childhood.

My mother accompanied me for my field research. My father was immensely helpful to take the samples to the laboratory and doing many other personal errands. I thank my parents for their love and support.

Non-academic staff of the Geography Department was very cooperatively helpful. I appreciate them.

LIST OF ABBREVIATIONS

CKDu - Chronic kidney disease of unknown etiology

DSD- Divisional Secretariat Divisions

F-- Fluoride

GIS - Geographical information system

GND -Grama Niladhari Divisions

GPS- Global Positioning System

IDW - Inverse distance weighted

NWSDB- National Water Supply and Drainage Board

RDHS -Regional Director of Health Service

RWHS – Rain Water Harvesting Systems

SLS- Standards of Sri Lanka

UNICEF- United Nations International Children's Emergency Fund

WHO - World Health Organization

TDS-Total Dissolved Solids

TABLE OF CONTENT

LIST OF ABBREVIATIONS	v
TABLE OF CONTENT	vi
LIST OF FIGURES	viii
LIST OF TABLES	xi
ABSTRACTCHAPTER 1- INTRODUCTION	
1.1 Background	1
1.2 The Research Problem	2
1.3 Main Objectives	3
1.3.1.Specific Objectives	4
1.4 Significance of the Study	4
CHAPTER 2 - LITERATURE REVIEW	6-28
2.1 Introduction	6
2.2 Sources of Fluoride	7
2.2.1 Properties of Apatite	7
2.2.2 Properties of Fluorite	8
2.2.3 Properties of Biotite	9
2.2.4 Properties of Hornblende	9
2.3 Geology of Vijayan Complex	10
2.4 Fluoride in Different Water Sources	13
2.5 International Standard of Fluoride for Drinking Water	15
2.6 Drinking Water Standards in Sri Lanka	
2.7 Fluoride in Drinking Water Global Studies	17
2.8 Sri Lankan Studies on Fluoride in Drinking Water	20
2.9 What is Fluorosis?	25
CHAPTER 3 - RESEARCHN METHODOLOGY	29-40
3.1 Study Area	29
3.2 Sampling	
3.3 Data Collection Methods and Preparation	
3.3.1 Interviews	35
2.2.2 Questionnaires	26

	3.3.4 Land Use Feature Class	36
	3.3.5 Hydro Feature Class	36
3.	.4 Research Design	37
3.	.5 Data Analysis	37
	3.5.1 Sampling techniques and analytical details	37
	3.5.2 Spatial Distribution of Hydrochemistry Using Inverse Distance Weighted Method .	38
	3.5.3 Spatial Statistics	38
	3.5.4 Overlay	38
	3.5.5 Spatial Join	39
	3.5.6 Risk Area	39
3	.6 Limitations	39
CHA	APTER 4- DENTAL FLUOROSIS DISEASE AND GEO CHEMICAL PARAMETERS OF THE GROUN	ID
WA [*]	TER41-8	36
4	.1 Introduction	40
4	.2 Case Studies of the Medical Officers, Academic Experts and the Community	40
	4.2.1 Case Studies	40
	4.2.2 Questionnaires	. 43
4	.3 Spatial Analysis of Geo Chemicals Characteristics of Ground Water in Vavuniya South	. 66
4	.4 Spatial Distribution of Water Sources with Geology Analysis	. 77
4	.5 Groundwater Quality Zonation	. 80
4	.6 Spatial Analysis of Distribution of Dental Fluorosis Patients in Vavuniya South	. 82
CHA	APTER 5 - CONCLUSION AND RECOMMENDATIONS86	-87
5	.1 Introduction	. 86
	.2 Conclusion	
5	.3 Recommendations	. 87
REF	ERENCES	. 88
	PENDIX I	
APP	PENDIX II	ii
4 D.D	DENDIV III	

LIST OF FIGURES

2.1: Apatite Mineral	08
2.2: Fluorite Mineral	08
2.3: Biotite Mineral	09
2.4: Hornblende Mineral	10
2.5: Simplified Geological map of Sri Lanka	11
2.6: Groundwater regimes in - shallow dug well	14
2.7: Groundwater regimes in- deep well	14
2.8: Global fluoride map showing fluorosis endemic areas	17
2.9: Igini seeds (Strychanospotatorum)	22
2.10: Schematic cross section of a human tooth	27
2.11: Dental Fluorosis- Deans Fluorosis Index	28
2.12: Discolouration of teeth in dental fluorosis	28
3.1: District Boundary Map of Vavuniya District	30
3.2: Distribution of Fluoride ions in groundwater of Sri Lanka	33
3.3: Vavuniya District Map and selected study area	34
3.4: Flow Chart of Overview of the Methodology	37

4.1: Occupation of heads of households	44
4.2: primary source of drinking water during dry and wet seasons	45
4.3: secondary drinking water source during wet and dry seasons	45
4.4: Adopted water purification methods for drinking water source	46
4.5: Usage of common wells and private wells	47
4.6: Amount of drinking water consumption per day	48
4.7: Level of dental fluorosis according to Deans Fluorosis Index	49
4.8: Comparison of dental fluorosis over adults verse children	50
4.9: Gender comparisons of dental fluorosis patients	50
4.10: Observed teeth using dean's fluorosis index	51
4.11: Sampled ground water location map of study area	69
4.12: Spatial variation of Fluoride	70
4.13: Spatial variation of Electrical Conductivity	71
4.14: Spatial variations of Total Dissolves Solid	72
4.15: Spatial variation of pH	73
4.16: A scatterplot showing the relationship between Fluoride consideration	74
and Electrical Conductivity (EC) in the study area	

4.17: A scatterplot showing the relationship between Fluoride consideration and Total Dissolved Solids (TDS) in the study area	75
4.18: Standard Deviation for Water quality parameter Map	76
4.19: Geology Map of Study Area with Fluoride concentration	78
4.20: Geology Map of Study Area with pH concentration	79
4.21: Water quality zonation map	81
4.22: Dental Fluorosis Patients Map- Vavuniya South	83
4.23: Density of dental fluorosis patients for each GN division in study area	84
4.24: Density of dental fluorosis patients map and Fluoride Distribution pattern Map in Vavuniya South	85

LIST OF TABLES

2.1: Formations in Sri Lanka	12
2.2.Average fluoride ranges of different types of waters	13
2.3: WHO guideline for fluoride for drinking water	15
2.4 Summarized Sri Lanka potable water standards Table	16
2.5 Concentration of fluoride in groundwater and its sources in various parts of the world based on literature Country	19
2.6 Fluoride concentration in groundwater and related dental health in 3 districts of Sri Lanka	20
2.7 The average fluoride concentrations in the well water of different provinces of Sri Lanka	21
2.8: percentage distribution of fluorosis in EppawalaBy Dean's Fluorosis Index	24
2.9.Comparison of fluoride levels in the collected rainwater and groundwater.	24
3.1 Basic Information of Vavuniya District	31
3.2: Resettlement details of Vavuniya District as on 31/12/2012	32
3.3 Parameters used for water samples	35

3.4 Collected data layers, scales, formats and the source	36
4.1: Number and average of adults and children in the sample	43
4.2 Comparison of common wells and private wells <1mg/L Fluoride	47
4.3 Geochemical data of groundwater samples from Vavuniya South	67
4.4: Ranking of parameters to delineate groundwater quality zones	80

Spatial Distribution of Fluoride in Ground Water and Spread of Dental Fluorosis Diseases in Vavuniya South, Sri Lanka

W. M. A. V. Rajakarunanayake

ABSTRACT

This thesis presents the connection between the ground water and dental fluorosis through spatial distribution of fluoride in Vavuniya South, Sri Lanka. The main objective is to gain insight into the spread of dental fluorosis and geo chemistry parameters of ground water in the relevant region. This research is a multi-disciplinary in four levels. After spatial analysis of geo chemical pattern and spread of the patients, dental fluorosis patients were geo tagged. Dug well water quality comparison with geo statistics was the final step. The field survey was conducted in all nineteen villages of the study area. A questioner was given to 100 families, totalling 415 people. Dean's fluorosis index was used for dental fluorosis categorization. Water samples were collected from drinking water sources. A meter was used for pH, Electrical conductivity (EC) and Total Dissolved Solids (TDS). Final water testing was done at the laboratory of Water Resource Board. Geospatial analysis of the various geological and hydro chemical datasets indicate Fluoride concentration in ground water is between 0.15 and 2.55 mg/L. 21 water samples exceed the permissible limit of Fluoride as 1 mg/L. Including 30 children, 76 dental fluorosis cases were identified. The geology map of the South Western part of the surveyed area shows Hornblende biotic genesis, Magnesium and Fluoride rich rocks. Northern Eastern sector compress more acidic silica rich rock formations. The ground water quality zonation map reveals 35% of the study area does not reach up to the accepted drinking water quality levels. It indicates safe piped water or rain water harvesting is an urgent requirement for Agbopura, Puthubulankulam, Mahamylamkulama, Madukanda, Avusthapitiya, Periyaulukulam, Awaranthulawa and Rankethgama.

Key words: Ground water, Fluoride, Fluorosis, GIS

CHAPTER ONE

INTRODUCTION

1.1 Background

High level of fluoride in the ground water is a global issue. United Nations International Children's Emergency Fund (UNICEF, 2012) estimates that fluorosis is endemic in at least 25 countries including India, South Africa and China. The fluoride ion level recommended by the World Health Organization (WHO, 2006) is below 1.5 mg/L. Greater than the recommended level will lead to health problems. According to potable water standards of Sri Lanka (SLS) 614:2013 stipulated by the Sri Lanka Standards Institution, the permissible fluoride level in drinking water is 1.0 mg/L.

Correct intake levels of fluoride ion is beneficial to both bone and dental structure. Lack of fluoride in childhood prevents the proper formation of teeth and weak born structures. Specific bacteria in dental plaque, ferment carbohydrates to produce acids that can demineralize tooth enamel. Excessive fluoride contained in drinking water during calcification can cause discoloration of children's teeth. If fluoride concentration is less than 0.5 mg/L, dental caries may be the result. Since children's tissues are free from the fluorides, their skeleton tissues can absorb the fluorides more easily. Continuous intake of high level fluoride can result in skeletal fluorosis. Skeletal and non-skeletal fluorosis creates pains in bone and joints, stiff back, burning sensations, muscle weakness, chronic fatigue, gastro intestinal problems and lack of appetite. This research is limited only to the dental fluorosis.

The first hydro chemical map in Sri Lanka was developed by Dissanayaka and Weerasooriya in 1985. It has indicated that ground water of some areas in Sri Lanka contains high concentrations of toxic materials such as arsenic / cadmium / nitrates / fluorides. The fluoride level of ground water map was updated by Chandrajith *et al.* in 2012. This map has been developed by using approximately 14,000 ground water samples. High level of fluoride was indicated in many districts of Sri Lanka.

Anuradhapura, Polonaruva, Ampara, Moneragala and Vavuniya districts belong to the harmful upper fluoride category.

According to the findings of Chandrajith *et al.* (2012), 8 million people in Sri Lanka are affected in consuming high fluorinated drinking water. This leads the school children and adults to a serious health risk.

Many researchers have identified the areas and exact locations where fluoride is high. A few locations of water sources are geo tagged. Until this study was completed in March 2016, there was no other dental fluorosis related multi-disciplinary research combined with GIS techniques to identify the geological aspect has been published. Most of the medical or geological researches were done in Anurdhapura District. In Sri Lanka, there are more than 30,000 bore wells (known as tube wells) within dry zone. More than 90% of ground water aquifers are municipal well fields and private boreholes in Jaffna, Batticaloa, Mannar, Vavuniya and Puttalam areas (Panaboke, 2006).

The research was focused on the spatial distribution of geology, land use patterns and the drinking water para meters. The ground survey was mainly focused on fluoride in ground water and spread of dental fluorosis in Vavuniya South. Combining all the above mentioned layers and using Inverse Distance Weighted was used to analyse the drinking water quality of the research area.

1.2 The Research Problem

Sri Lanka has 3 climatic zones as wet, intermediate and dry zone. 65% of the land falls in to the dry zone; Vavuniya district where the study was carried out also belongs to the dry zone. The dry zone water table is deep and very often bore wells reach down to the saturated water level. The depth of the bore wells differ from village to village depending on the geological features. According to the communities of the area all the wells are deeper than 20 feet.

The corns of mineralized water get infiltrated with the fresh water. The study area is boarded to the north central province where there is mineral apatite enriched occurrence at Eppawala. The fluoride concentration in ground water sources in Eppawala varies from 0.96 mg/L to 2.81 mg/L (Nandasena *et al*, 2011). It indicates the interchange of fluoride and hydroxyl ions. Administrative districts are divided on surface geological