Studies of Polycyclic Aromatic Hydrocarbons in Wood Smoke and Smoked Fish

by Lokuge Mohan Iroshan Mihindupala

Thesis submitted to the University of Sri Jayewardenepura for the award of the degree of Masters of Food Science and Technology on 2006.

Declaration

The work describe in this thesis was carried out by me under the supervision of Professor Arthur Bamunuarracchi and Dr. Yasmina Sulthanbawa and a report on this thesis has not been submitted in whole or in part of any University or any other institute for another degree.

note

Lokuge Mohan Iroshan Mihindupala.

We Prof. Arthur Bamunuarracchi and Dr.Yasmina Sulthanbawa certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation.

Signature

Prof. Arthur Bamunuarracchi Senior Professor in Applied Chemistry Department of Food Science and Technology University of Sri Jayewardenepura

Signature

Dr. Yasmina Sulthanbawa Senior Research Officer Industrial Technology Institute Colombo

Table of Content

	Page
Table of contents	i
List of Tables	iv
List of figures	v
Acknowledgement	viii
Abbreviations	ix
Abstract	x
Chapter 1	01
Introduction	
1.1 Background	02
1.2 Sri Lanka Scenario	03
1.3 Objectives of the study	04
Chapter 2	05
Review of Literature	
2.1 Introduction to PAH	06
2.2 PAH chemistry	06
2.3 PAH stability	.08
2.4 PAH toxicity	12
2.5 Legal Limits	14
2.6 Sources and contamination roots for PAH	14
2.7 Wood Smoke	16

2.8 Analysis of PAH	21
Chapter 3	29
Materials and Methods	
3.0 Principal of method	30
3.1 Safety precautions	31
3.2 Wood species for smoking	31
3.3 Low cost smoker	31
3.4 Collection of wood smoke	34
3.5 Smoking of fish	35
3.6 HPLC analysis procedure	38
3.7 Quality control of analysis	49
3.8 HPLC analysis	50
Chapter 4	53
Results and Discussion	
4.0 wood species and sample blanks	54
4.1 Calibration Curves	54
4.2 calculation of PAHs in samples	55
4.3 PAH detection under HPLC	57
4.4 HPLC chromatogram interpretations	59
4.5 Determination of extracting efficiency (recovery)	62
4.6 Sample Analysis	62
4.7 PAHs in smoked fish	74
4.8 PAH content comparison on wood smoke and smoked fish	76

4.9 Incomplete tasks	79
Chapter 5	80
Concluding Remarks and suggestions	
5.1 Smoking	81
5.2 PAH analysis	82
5.3 Suggested Smoking Method for low PAHs	82
References	84
Appendices	86
Appendix 1: HPLC Chromatograms	88
Appendix 2: Smoke collections Process and equipments	90
Appendix 3: Smoked fish and filleting	95
Appendix 4: Botanical and general information of wood species	97

List of Tables

Table 2.3.1 Solubility of Benzene and selected PAHs in Distilled Water	09
Table 2.3.2 Physical properties of some PAHs	10
Table 2.8.1 some commonly used methods for PAH determination	26
Table 3.6.4.1 Composition of PAH standard mixture/stock solution	44
Table 3.6.4.2 Preparation of standard solutions	46
Table 3.6.4.3 sampling data for wood smoke	47
Table 3.6.4.4 sampling data for smoked fish	48
Table 3.8.2.1 wavelength settings for FID	51
Table 4.3.1 PAH detection Pattern under applied conditions	57
Table 4.5.1 PAH recovery from filter papers	62
Table 4.6.1 Analysis results for PAHs on wood species and smoked fish	64
Table 4.6.11 Total PAH emission of wood smoke	72

List of Figures

Figure 2.3.1 Structures of common poly aromatic Hydrocarbons	11
Figure 2.8.1 Extracting efficiencies of PAHs in common extracting methods	24
Figure 3.1.1 Flow diagram for principal of method of analysis	30
Figure 3.3.1.a. Rack for placing fish inside the chamber	32
Figure 3.3.1.b. Low cost smoker	33
Figure 3.4.1 Assembling filter papers into a sampling cassette	34
Figure 3.4.2 Sampling cassette with sorbrnt tube and low volume sampling pump	35
Figure 3.4.3 Equipment assembling for PAH trapping	36
Figure 3.6.2.1 Sample preparation method for PAH trapped filter papers	41
Figure 3.6.2.2 Sample preparation procedure for smoked fish	43
Figure 3.6.2.3 Mobile phase parameters for PAH analysis	50
Figure 3.8.2.1 Gradient composition chart for mobile phase	51
Figure 3.8.2.2 Wavelength program for FlD	52
Figure 4.0.1 Sample blanks	54
Figure 4.1.1 Calibration curves for PAH	55
Figure 4.4.1 Standard chromatogram with retention time table for 254nm	59
Figure 4.4.2 Named PAH standard chromatogram	60
Figure 4.6.1.a PAH content in cinnamon wood (without Naphthalene)	65
Figure 4.6.1.b PAH content in cinnamon wood (with Naphthalene)	65
Figure 4.6.2 PAH chromatogram for cinnamon wood species	66

Figure 4.6.3 PAH content of Madan wood species (with Naphthalene)	67
Figure 4.6.4 PAH content of Madan wood species (without Naphthalene)	67
Figure 4.6.5 Chromatogram for Zyzigium wood smoke	68
Figure 4.6.6 PAH content in coconut shell smoke	68
Figure 4.6.7 Chromatogram for Mango wood smoke	69
Figure 4.6.8 PAHs in Mango wood smoke	69
Figure 4.6.9 PAHs in Jack wood smoke	70
Figure 4.6.10 Heavy PAH content in wood smoke	71
Figure 4.6.11 comparison of PAH emissions of wood smokes	72
Figure 4.6.12 Comparison of total PAH emission of wood smokes	73
Figure 4.7.1 PAHs in Jack wood smoked fish	74
Figure 4.7.2 PAH content in cinnamon wood smoked fish	74
Figure 4.7.3 Heavy PAHs in smoked fish	75
Figure 5.3.1 Smoker with proposed modifications for low PAH emissions	83
Figure A1.1 Chromatogram for PAH spiked with Naph, Anth and B(a)P	88
Figure A1.2 Chromatogram for smoked fish using Lunumidella wood	88
Figure A1.3 Chromatogram for Jack wood smoke	89
Figure A1.4 Chromatogram for Mango wood smoke	89
Figure A2.1 Equipment setups for smoke PAH trapping	89
Figure A2.2 Semi commercial and commercial Smokers	91
Figure A2.3 Assembling filter paper and cassette	92
Figure A2.4 Proper way of assembling the sampling pump	93
Figure A2.5 HPLC instrument used for the PAH analysis	94

Figure A3.1 Smoked fish samples for PAH analysis	95
Figure A3.2 Salmon fish samples smoked using ITI smoker	96
Figure A 3.3 Filleting of fish for smoking	96

Acknowledgement

I would like to express my sincere thanks and appreciations to my supervisor Prof: Arthur Bamunuarrachchi, Senior Professor Department of Food Science and Technology, and Dr.K K D S Ranaweera, Head, Department of Food Science and Technology, University of Sri Jayewardenepura for their guidance, encouragement and valuable comments provided. My thanks also goes to supervisor Dr Mrs Yasmina Sulthanbawa for providing the topic, allowing access to "science direct" for obtaining technical materials and sponsoring for the project half a way through a grant received for ITI, Sri Lanka. I thank Dr Mahanama Senior Lecturer at Department of Chemistry, University of Colombo for allowing to use the HPLC instrument the department of Chemistry. I thank Ms Manuja Ranasinghe (Lycium International) for the encouragements and valuable advices provided to overcome the obstacles and difficulties. I further wish to thank Mr Lakmal Kalutarage, (Che: Sp: final year Student), Mr. Niranjan Liyanage (M.Phil Student) and Mr.Pasha (Technical Officer University of Colombo) for assisting me for HPLC analysis. This task would not possible without the support provided by Mr, Gamunu Angammana, Mr.Arjuna Dharmadasa (Pyramid Wilma Limited), Mr ULA Majeed (PhD student, ITI) and Mr Aruna Shantha (Fellow MSc student at. Food Sc & Tech).Further I must thank for Mr. Lionel (Research Officer-Environmental Division, ITI) for providing personnel sampling pump, flow meter and accessories free of charge. I must thank for Ms Indira Wickramasinghe, Ms Rupika Perera, Mr. Sisira Weerasinghe (Technical Officer), Mr. Rupasinghe and all the staff members at the Dept: of Food Sc: & Tech: at the University of Sri Jayewardenepura for their kind guidance and assistance provided for making this a success.

Abbreviations

PAH	Poly Aromatic Hydrocarbons		
HPLC	High Performance Liquid	Phe	Phenanthrene
	Chromatography	Anth	Anthracene
GC	Gas Chromatography	Fluor	Fluoranthene
UV	Ultra Violet	Pyr	Pyrene
FlD	Fluorescence Detector	B(a)A	Benzo(a)anthracene
PDA	Photo Diode Array Detector	Chry	Chrycene
B(a)P	Benzo(a)pyrene	B(b)F	B(b)Fluoranthene
EU	European Union	B(k)F	Benzo(k)fluoranthene
LOD	Limit of Detrection	Di(a)A	Dibenzo(a)Anthracene
SMF	Smoked Fish	B(g,h,i)	P Benzo(ghi)pyrelene
Napt	Napthalene	In (123-	-cd)P In (123-cd)Pyrene
Acy	Aceynapthalene	MS	Mass spectroscopy
Ace	Acenapthene	FT-IR	Fourier transformation
Flu	Fluranthene		Infrared Spectroscopy
Dispo	sition: the way sth is placed or	DAD	Diode Array Detector

arranged

Abstract

Smoked fish has wide range of popularity among people in all over the world irrespective of their cultural differences. However the smoked food has gained concerns among scientific communities because the wood smoke contains toxic Poly Aromatic Hydrocarbons (PAHs). There are sufficient evidences to prove that PAHs are mutagenic and carcinogenic. Among those carcinogenic PAHs Benzo(a)pyrene,[B(a)P] has identifies as the most potent carcinogenic compound and hence it is considered as the marker compound for toxic PAHs. Most western countries have imposed strict regulatory measures to avoid risk of PAHs to the consumers.

Even though Fish and other food smoking has been practiced in Sri Lanka for a long time, no sufficient studies have carried out to determine the PAH emission of the existing smoking methods. This study was therefore focused on to find whether the existing smoking methods in Sri Lanka and wood species used for smoking are safe in the sense of PAHs present.

PAH emission from five woods (Mango. Jackfruit, Coconut Shell, Cinnamon and Madan) and three smoked fish products using three different wood species (Cinnamon, Jack and Lunumidella) were analyzed using HPLC consisted of UV and FID detectors and a C18 reverse phase column. The smoking performed using a locally built smoker under optimized conditions to simulate the smoking of fish in rural areas in Sri Lanka. Smoke samples collected using a personal sampling pump. Wood smoke and smoked fish using same smoker analyzed for 16 PAHs (US EPA priority pollutants).

Х

Smoke generated by all five woods contained light PAHs in large quantities, especially Naphthelene, Acenaphthene, Phenatherene and Fluoranthene. Cinnamon wood contained very high naphthalene content.(3117.6ug/litre) The heavy PAHs also detected on all wood species but Madan (*Zyzigium cumini*) and Jack wood contained higher quantities compared to other three wood species. B(a)p detected in Jack (1.35 μ g/liter), Madan (11.77 μ g/liter) and Coconut Shells(0.48 μ g/liter).PAH content in smoked fish were very high compared to the wood smoke. Smoked fish from wood species jack, Cinnamon and Lunumidella contained B(a)p 38.77 μ g, 2033.87 μ g, 968.38 μ g respectively per 100g of smoked fish. In this research all the obtained information showed that the local fish smoking methodologies (direct exposure to flue gas) extremely unsafe and therefore it has to be re-evaluated in the sense of PAH toxicity.

Studies of Poly Aromatic Hydrocarbons on wood smoke and smoked fish

Chapter 1

Introduction