UNCERTAINTY ANALYSIS IN MASS AND PRESSURE

MEASUREMENTS

by

GAMAACHCHT WITTHANALAGE CHITHRANI

WIJAYASUNDARA

Thesis submitted to the University of Sri Jayewardenepura for the

award of the Degree of Master of Science in Industrial

Mathematics in 2008

The work described in this thesis was carried out by me under the supervision of Mr.K.A.Gunasoma and Dr.Menaka Liyanage and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma

860 EU NE Imbs

16:10:2008

Date

G.W.C.Wijayasundara

We certify that the above statement made by the candidate is true and this thesis is suitable for submission to the University for the purpose of evaluation

Date: 16.10.2008

yang.

Dr. Menaka Liyanage Senior Lecturer Department of Mathematics University of Sri Jayewardenepura

Date : . 16 . 10 . 2008 .

our in

MJ.K.A.Gunasoma Director

Measurement Units Standards and

Services Department

Table of content

Chapter 1 Introduction	1
1.1 Importance of measurement	1
1.2 Objective of project	2
1.3 Scope of the project	2
1.4 Structure of measurement system	3
1.4.1 Units of standards	3
1.4.2 Traceability	5
1.4.3 National measurement laboratory of Sri Lanka	8
1.4.4 Calibration and verification	9
1.5 Uncertainty	10
1.5.1 Definition of uncertainty	10
1.5.2 Error and uncertainty	11
1.6 Reasons for estimating uncertainty	13
1.7 Sources of uncertainty	14
1.8 International consensus on the expression of	
uncertainty of measurement	16
1.9 Guide to the expression of Uncertainty in Measurement (GUM)) 19
1.10 Supplement 1 to GUM-	
propagation of distributions using a Monte Carlo method	19
Chapter 2 Literature review	21
Chapter 3 Methodology	26
3.1 Procedure of uncertainty analysis in mass measurement	26

3.2 Procedure of uncertainty analysis in pressure measurement	27
3.3 Summary of procedure for evaluating	
and expressing uncertainty using MCM	28
3.4 Method of least squares to obtain	
standard uncertainty of a predicted correction	33
3.5 Adaptive Monte Carlo method	34
3.6 Validation of the GUM uncertainty framework using MCM	39
Chapter 4 Uncertainty analysis in mass measurements	40
4.1 Method of calibration of weights	40
4.2 Evaluation of uncertainty in mass measurement	
from method of GUM	42
4.3 Evaluation of uncertainty in mass measurement from method	
use in National Physical Laboratory(NPL), India	48
4.4 Evaluation of uncertainty in mass measurement	
by adaptive Monte Carlo method	51
4.5 Results in mass measurements	53
Chapter 5 Uncertainty analysis in pressure measurements	57
5.1 Method of calibration of pressure gauge	57
5.2 Direct evaluation of uncertainty for the linear model from	
method of GUM based on Least Square Method	58
5.3 Evaluation of uncertainty for the linear model using	
Monte Carlo Method (MCM)	60
5.4 Evaluation of uncertainty in pressure measurement	
from method MSL	61

5.:	5 Results in pressure measurements	64
Chapter 6	Mathematics and Statistics behind the uncertainty	
	evaluation methods	66
6.	1 Mathematics and Statistics behind the method of GUM	66
6.2	2 Mathematics and Statistics behind the least square method	76
6.	3 Mathematics and Statistics behind the method of MCM	78
Chapter 7	Discussion and conclusion	87
	References	91
Appendix A	Random number generators	94
Appendix E	Validation of program	99

List of tables

Table 1.1	SI base units	4
Table 1.2	Example for derived units	5
Table 4.1	Most commonly used alloys for weights	44
Table 4.2	True masses and uncertainties given by GUM method,	
	NPL method and MCM	53
Table 4.3	Uncertainties of masses with maximum	
	permissible error (mpe) of masses.	55
Table 4.4	Values of coverage interval given by MCM for	
	each weight and validity of GUM and NPL methods	56
Table 5.1	Results of pressure calibration	58
Table 5.2	Calculation of standard uncertainty of repeatability	62
Table 5.3	Calculated correction and uncertainty of pressure from	
	GUM linear model, Monte Carlo linear model and MSL method.	64
Table 6.1	Factors corresponding to some coverage intervals	69
Table B.1	Results of additive model example	99
Table B.2	Results of mass calibration example	101

List of figures

Figure 1.1	Scheme for a National Measurement System	7
Figure 2.1	Values of the density of air obtained by Monte Carlo	
	and Gum in the range of temperature from 15° C to 25° C.	22
Figure 2.2	Values of the uncertainty of the density of obtained by Monte	
	Carlo and by GUM in the range of temperature from 15^{0} C to 25^{0} C	22
Figure2.3	Values of the density of air obtained by Monte Carlo and GUM	
	in the range of pressure from 89000Pa to 104000Pa.	23
Figure 2.4	Values of the uncertainty of the density of air obtained by	
	Mote Carlo and GUM in the range from 89000Pa to 104000Pa.	23
Figure 3.1	Flow chart of Adaptive Monte Carlo Method	38
Figure 4.1	A stainless steel standard weight set	40
Figure 4.2	Computer output screen of mass calibration -200g	41
Figure 4.3	True masses and uncertainties given by GUM method,	
	NPL Method and MCM	54
Figure 4.4	Values of uncertainties obtained by GUM method,	
	NPL Method and MCM Vs logarithm of nominal value	54
Figure 4.5	Values of uncertainties obtained by GUM method, NPL Method	
	and MCM and manufacture calibration certificate value	55
Figure 4.6	Values of uncertainties obtained by GUM method, NPL method and	
	MCM display with maximum permissible error (mpe).	56
Figure 5.1	Pressure gauge	57
Figure 5.2	Scatter plot of correction Vs difference between reading of test	
	pressure gauge and average of test pressure gauge readings	59

Figure 5.3	Outputs of linear regression analysis	59
Figure 5.4	The calculated correction for pressure measurement by	
	GUM linear model, Monte Carlo linear model and MSL method	64
Figure 5.5	Uncertainty of pressure of GUM linear model, Monte Carlo	
	linear model and MSL method	65
Figure 5.6	Uncertainty in pressure measurement of Least Square Method.	63
Figure 6.1	Normal distribution	70
Figure 6.2	Uniform (rectangular) distribution	71
Figure 6.3	Symmetric trapezoidal distribution	72
Figure 6.4	The distribution function $G_y(\eta)$ corresponding to	
	an asymmetric PDF.	85
Figure 6.5	Normal Distribution with Coverage interval	86
Figure A.1	Histogram of the output of rectangular distribution which	
	given by 'rand' build-in function of MATLAB	94
Figure A.2	Histogram of the output of enhanced Wichmann-Hill	
	generator for pseudo-random numbers	95
Figure A.3	Histogram of normal distribution which given by	
	'randn ' build-in function of MATLAB for N=1000	95
Figure A.4	Normal probability plot for normal distribution which given	
	by 'randn ' build-in function of MATLAB for N=1000	96
Figure A.5	Histogram of normal distribution which given by	
	'randn ' build-in function of MATLAB for N=10000	96
Figure A.6	Histogram of normal distribution which given by Box-Muller	
	Gaussian pseudo number generator for N=1000	97

Figure A.7Normal probability plot for normal distribution which given
by Box-Muller Gaussian pseudo number generator for N=100097Figure A.8Histogram of normal distribution which given by Box-Muller
Gaussian pseudo number generator for N=1000098

List of Abbreviations

NML	National Measurement Laboratory
CGPM	General Conference of Weights and Measures
SI	International System
VIM	International Vocabulary of basic and General Terms in Metrology
CIPM	Comite International des Poids et Mesures
BIPM	Bureau International des Poids et Mesures
IEC	The International Electrotechnical Commission
IFCC	International Federation of Clinical Chemistry
IUPAC	International Union of Pure and Applied Chemistry
IUPAP	International Union of Pure and Applied Physics
OIML	International Organization of Legal Metrology
ISO	International Organization for Standardization
GUM	Guide to the expression of Uncertainty in Measurement
JCGM	Joint Committee for Guides in Metrology
MCM	Monte Carlo Method
PDF	Probability Density Function
NPL	National Physical Laboratory
MSL	Measurement Standards Laboratory

Acknowledgement

I wish to thank my supervisors Mr. K. A. Gunasoma, Director, Measurement Units Standards and Services Department and Dr. Menaka Liyanage, senior lecturer of the Department of Mathematics, University of Sri Jayewardenepura, for their guidance and many useful discussions throughout the course of this work.

I am grateful to Prof. Sunethra Weerakoon, Department of Mathematics, University of Sri Jayewardenepura for her invaluable suggestions and generous support.

I gratefully acknowledge the members of the Department of Mathematics of University of Sri Jayewardenepura for their help in numerous ways.

I dearly express my appreciation to all of my friends for their most helpful assistance in many ways.

ABSTACT

A measurement result is complete only when accompanied by qualitative statement of its uncertainty. The measurement is required in order to decide if the result is adequate for its intended purpose and to ascertain if it is consistent with other similar results. Without such a measure it is also impossible to judge the fitness of the value as a basis for making decisions relating to health, safety, commerce or scientific excellence.

Thus aim of this project is to propose better uncertainty methods for Measurement Units, Standards and Services Department (MUSSD) by analyzing the uncertainty methods used in various National Measurement Laboratories (NMLs) in mass and pressure measurements. Two internationally accepted master documents for evaluating and expressing uncertainty in measurement namely "The Guide to the Expression of uncertainty in measurement" and its supplement are used as a guide.

Uncertainties in mass measurements are calculated for 1g -500g by the method described in GUM, by the method use in National Physical Laboratory (NPL) in India and also by the method of Monte Carlo (MCM) using MATLAB codes.

Uncertainties in pressure measurements are calculated by fitting a linear model using least square method and the method that used in Measurement Standards Laboratory (MSL), New Zealand. Both direct evaluation method and Monte Carlo Method (MCM) are used for the evaluation of uncertainty of linear model which gives almost similar results.

Х

The uncertainty analysis shows that Monte Carlo Method (MCM) and the method used in MSL give better results for mass and pressure measurements respectively, which can be recommended for Measurement Units, Standards and Services Department.

Chapter 1

INTRODUCTION

1.1 Importance of Measurements

Metrology is the name given to the science of measurements. Measurements have a great impact on our everyday lives, playing important roles in fields such as trade, production, agriculture, health sector, energy production and distribution, telecommunications, transport, construction, safety, industry and research and development. A credible measurement system is therefore vital for the overall well-being of society. In addition to its societal impact, science of measurements contributes significantly to the economic situation of a country, as witnessed when determining the global value of products and services whose value can only be assessed through measurements. Harmonization of the requirements governing this system not only provides an important basis for measurement credibility, but also serves to promote international trade through the elimination of technical barriers.

In order to investigate the results of measurements on a consistent basis, it is necessary to establish

- Standards of units of length, weight, time, temperature etc.
- Traceability or unbroken chain of comparisons.

Other than the above two properties, uncertainty of measurements plays a main role in metrology. An expression of a measurement is incomplete unless it includes a statement of the associated uncertainty. (ISO, 1995, p4) An estimate of uncertainty is required in order to decide if the result is adequate for its intended purpose and to ascertain if it is