Mass propagation of *Dendrocalamus asper* through tissue culture and comparison of selected morphological, physical and anatomical features with seed raised plants

by

KUMBURE GEDARA PRIYANTHA HEMALAL CHANDRASENA

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Doctor of Philosophy in Botany on 31st January 2016.

DECLARATION BY THE CANDIDATE

The work described in this thesis was carried out by me under the supervision of Prof. (Mrs.) W.T.P.S.K. Senarath (Department of Botany, University of Sri Jayewardenepura) and Prof. Hiran Amarasekara (Department of Forestry and Environmental Sciences, University of Sri Jayewardenepura) and a report on this has not been submitted in whole or in part to any university for any other degree/Diploma.

09.05.2016

K.G.P.H. Chandrasena B.Sc. (Biology), M.Phil. (Botany) Date

CERTIFICATION OF SUPERVISORS

We certify that the candidate has incorporated all corrections, additions and amendments recommended by the examiners.

Thornth

Prof. (Mrs.) W.T.P.S.K. Senarath Head of the Department, Department of Botany, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka.

Prof. Hiran Amarasekara
Professor,
Department of Forestry and
Environmental Sciences,
University of Sri Jayewardenepura,
Gangodawila, Nugegoda, Sri Lanka.

Date: 05/05/16

Date: 515)2-016

то

Sasan putha, Haríthashí duwa,

g

Amma

Who sacrífice more than me Towards thís effort.

Together we made it...

TABLE OF CONTENTS

		Content	Page
I.		TABLE OF CONTENTS	i
II	2 • ¹⁷	LIST OF TABLES	vii
п	I.	LIST OF FIGURES	ix
IV	7.	LIST OF PLATES	xi
V.		LIST OF ABBREVIATIONS	xiv
V	I.	ACKNOWLEDGEMENTS	xv
V	п.	ABSTRACT	xvii
1.		INTRODUCTION	1
	1.1	General Introduction	1
	1.2	Origin and Distribution	2
	1.3	Economic Importance of Dendrocalamus asper	3
	1.4	Need for Mass Propagation of <i>D. asper</i>	5
	1.5	Objectives of the Study	8
2.		LITERATURE REVIEW	9
	2.0	General	9
	2.1	Introduction to Bamboo	9
	2.2	Global and Sri Lankan Context of Bamboo	10
	2.3	Distribution of <i>D. asper</i> in Sri Lanka and Globally	11
	2.4	Commercial Products	12

2.5 Taxon	nomy, Morphology, Growth and Anatomical Structure	
of <i>D</i> .	asper	15
2.5.1	Taxonomy of <i>D. asper</i>	15
2.5.2	Morphology of <i>D. asper</i>	15
2.5.3	The growth of <i>D. asper</i>	17
2.5.4.	Anatomical structure of <i>D. asper</i>	19
2.6 Impo	rtance of <i>D. asper</i>	23
2.6.1	Cultural aspects	23
2.6.2	Environmental aspects	24
2.6.3	Economic importance	25
2.6.4	Nutritional and nutraceutical value of <i>D. asper</i>	27
2.6.5	Medicinal value	27
2.7 Plant	Tissue Culture Technology	28
2.8 Tissu	e Culture of Bamboo	29
2.8.1	Use of axillary buds of bamboo for micropropagtion	30
2.8.2	In vitro germination of seeds and embryos	31
2.8.3	Tissue culture of Genus Dendrocalamus	32
2.8.4	Tissue culture of <i>Dendrocalamus asper</i>	37
2.8.5	Field establishment of micropropagated bamboo and	
	comparison with conventionally grown plants	41
2.9 Wood	d Quality Analysis of <i>D. asper</i>	42
3. MAT	ERIALS AND METHODS	45

45

3.1 General

3.2	Determination of Suitable Starting Material for D. asper Mass		
	Propa	gation	47
	3.2.1	Determination of percentage in vitro seed germination	47
	3.2.2	Use of nodal segments from secondary branches of mature	
		plants as a starting material	47
	3.2.3	Determination of the best growth regulator combination for in	
		vitro shoot initiation from nodal segments obtained from in vitro	
		raised seedlings and vegetatively propagated plants	48
3.3	Deter	mination of the Best Medium for Shoot Multiplication	
	and E	longation	49
3.4	Effect	of Shoot Cluster/Propagual Size on Shoot Multiplication .	49
3.5	Deter	mination of Suitable State of the Medium (Liquid or	
	Semi-	solid) for Shoot Multiplication and Elongation	49
3.6	Deter	mination of Best Growth Regulator Concentration for	
	Induc	tion of Roots	50
3.7	Effect	of Shoot Cluster/Propagule Size on Root Initiations	50
3.8	Acclin	natization of Micropropagated Plantlets of <i>D. asper</i>	51
3.9	Comp	arison of the Growth of in vitro Propagated and Seed Raised	
	Plants	of D. asper	53
3	3.9.1	Comparison of shoot morphology of tissue cultured plants and	
		seed raised plants grown in the field	53
3	3.9.2	Comparision of the chlorophyll a, b and total chlorophyll content	
		in seed raised and tissue cultured plants of <i>D. asper</i>	54

	3.10)Deteri	nination of the Most Suitable Geographical Area in Sri Lanka	
		to Esta	ablish <i>D. asper</i> as Commercial Plantations	55
	3.11	l Comp	arison of Basic Morphological, Physical and Anatomical	
		Prope	rties of Mature Plants of Seed Raised and Micropropagated	
		Plantl	ets of D. asper	57
		3.11.1	Comparison of basic morphological properties of mature plants	
			of micropropagated and seed raised plants of <i>D. asper</i>	57
		3.11.2	Comparison of specific gravity values as a physical property	
			of tissue cultured and seed raised plants of <i>D. asper</i>	58
		3.11.3	Comparison of anatomical properties of tissue cultured	
			and seed raised plants of <i>D. asper</i>	59
	3.12	2 Numl	per of Plants/Explant and Cost per Plant	61
4.		RESU	LTS AND DISCUSSION	62
	4.1	Gener	al	62
	4.2	Deter	mination of Suitable Starting Material for D. asper	
		Mass	Propagation	64
		4.2.1	Determination of percentage in vitro seed germination	64
		4.2.2	Use of nodal segments from secondary branches of mature	
			plants as a starting material	66
		4.2.3	Determination of best growth regulator combination for in vitro	
			shoot initiation from nodal segments obtained from in vitro	
			raised seedlings and vegetatively propagated plants	70

4.3	Deterr	nination of the Best Medium for Shoot Multiplication	
	and E	longation	74
4.4	Effect	of Shoot Cluster/Propagule Size on Shoot Multiplication .	77
4.5	Deteri	nination of Suitable State of the Medium (Liquid or	
	Semi-S	Solid) for Shoot Multiplication and Elongation	79
4.6	Deteri	nination of Best Growth Regulator Concentration for	
	Induc	tion of Roots	81
4.7	Effect	of Shoot Cluster/Propagule Size on Root Initiation	83
4.8	Acclin	natization of Micropropagated Plantlets of D. Asper	85
4.9	Comp	arison of the Growth of <i>in vitro</i> Propagated and Seed	
	Raisec	l Plants of D. Asper	89
	4.9.1	Comparison of shoot morphology of tissue cultured plants	
		and seed raised plants grown in the field	89
	4.9.2	Comparision of chlorophyll a, b and total chlorophyll content	
		in seed raised and tissue cultured plants of <i>D. asper</i>	92
4.10) Deter	mination of Most Suitable Geographical Area in Sri Lanka	
	to Est	ablish D. Asper as Commercial Plantations	94
4.1	l Comp	parison of Basic Morphological, Physical and Anatomical	
	Prope	erties of Mature Plants of Seed Raised and Micropropagated	
	Plant	s of D. Asper	99
	4.11.1	Comparison of morphological properties of mature plants of	
		micropropagated and seed raised plants of <i>D. asper</i>	101
	4.11.2	Comparison of specific gravity of tissue cultured and seed	
		raised mature plants of <i>D. asper</i>	109

	4.11.3 Comparison of anatomical properties of tissue cultured and	
	seed raised mature plants of D. asper	112
4.1	2 Number of Plants/Explant and Cost per Plant	119
5.	CONCLUSIONS AND RECOMMENDATIONS	121
5.1	Conclusions	121
5.2	2 Recommendations	124
6.	REFERENCES	125

APPENDICES

144

v	
۰.	

II. LIST OF TABLES

Table	Page	No.
Table 3.1	Different potting mixtures tested for the growth of	
	micropropagated plantlets of <i>D. asper</i>	52
Table 4.1	In vitro seed germination percentage of D. asper after 21 days	
	of incubation in GR free MS media	64
Table 4.2	Mean no of shoots, mean lengths and no. of leaves obtained	
	after six weeks of incubation in media supplemented with	
	different BA concentrations	71
Table 4.3	Growth of shoot clusters as a response to different	
	concentrations of BA after eight weeks	74
Table 4.4	Effect of initial shoot cluster size on root initiation of in vitro	
	raised shoots of <i>D. asper</i> after 8 weeks of incubation	83
Table 4.5	Basic morphological parameters of 4 1/2 years old	
	micropropagated plants and seed raised plants after	
	4 ¹ / ₂ years of establishment in the field	102
Table 4.6	Comparision of findings of macroscopic charasteristics of	
	<i>D. asper</i> with previous reports on <i>D. asper</i>	107
Table 4.7	Specific gravity values of mature plants of tissue cultured and	
	seed raised D. asper. Mean SG value for the plant and variation	
	of SG value along the culm	110
Table 4.8	Percentage area covered by the vascular bundles of tissue	
	cultured and seed raised plants	114

Table 4.9	Variation of diameter of meta xylem vessels and Phloem sieve	
	tube elements along the culm and between two plant types of	
	D. asper	116

III. LIST OF FIGURES

Figure	F	age No.
Figure 3.1	Planting pattern of seedlings and tissue cultured plants in the	
	experimental field site	. 53
Figure 3.2	Sampling procedure for each culm and procedure for sample	
	preparation for the measurement of specific gravity and	
	anatomical studies	. 59
Figure 4.1	Shoot number, shoot length and no. of leaves derived from	
	nodal segments in response to different concentrations of BA	72
Figure 4.2	Mean shoot no. increment, mean shoot length increment and	
	mean no. of leaves produced with different concentrations	
	of BA in the multiplication and elongation stage	. 75
Figure 4.3	Effect of propagule/shoot cluster size on shoot multiplication	
	and vigour of shoots produced after six weeks of incubation	
	in MS medium supplemented with 2.0 mg/L BA	78
Figure 4.4	Effect of liquid and agar solidified medium on shoot	
	multiplication and elongation in MS medium supplemented	
	with 2.0 mg/L BA after 6 weeks	. 80
Figure 4.5	Mean root number and mean root lengths achieved at the root	:
	initiation stage for different concentrations of IBA and IAA	. 82
Figure 4.6	Increment of mean shoot number, mean shoot length and leaf	
	number of 1 year old seed raised and tissue cultured plants of	
	D. asper	. 90

Figure 4.7	Variation in total chlorophyll content with the time in tissue	
	cultured and seed raised plants of D. asper	92
Figure 4.8	Variation of chlorophyll a content with the time in tissue	
	cultured and seed raised plants of D. asper	93
Figure 4.9	Variation of chlorophyll b content with the time in tissue	
	cultured and seed raised plants of D. asper	94
Figure 4.10	Mean number of culms/bush, mean culm height and mean	
	number of leaves per culm after one year of establishment	
	of tissue cultured <i>D. asper</i> in different localities	95
Figure 4.11	Basic morphological parameters of micropropagated plants	
	and seed raised plants after 4 ½ years of establishment in	
	the field	103
Figure 4.12	Variation of internode length along the height from base to	
	apex of tissue cultured and seed raised plants	106
Figure 4.13	Variation of percentage of area covered by vascular bundles	
	along the culms of tissue cultured and seed raised plants	115
Figure 4.14	Variation of diameter of phloem sieve tube elements and meta	
	xylem cell along the culms of tissue cultured plants and	
	seed raised plants of <i>D. asper</i>	118

x

IV. LIST OF PLATES

Plate	Page	e No.
Plate 1.1	Global distribution of <i>D. asper</i>	3
Plate 2.1	Culm morphology of <i>D. asper</i>	17
Plate 2.2 (a)	An internode part of <i>D. asper</i>	20
Plate 2.2 (b)	Cross section of <i>D. asper</i> culm	20
Plate 2.2 (c)	D. asper vascular bundle	20
Plate 2.3	Microstructure of D. asper for (a) culm circular cross Section,	
	(b) distribution of vascular bundles from the outer to the inner	
	surface and (c) parenchyma cells and vascular bundle which	
	consists of vessels, phloem and fibre	21
Plate 3.1	Twelve field establishment sites of tissue cultured D. asper	
	plants	56
Plate 4.1	A seed sample of <i>D. asper</i>	65
Plate 4.2 (a)	Seed germination of <i>D. asper</i>	65
Plate 4.2 (b)	8 weeks old seedling used to take nodal segments	65
Plate 4.3	Single nodal segment cultures of field grown D. asper	67
Plate 4.4	Shoot initiation from nodal segments taken from in vitro	
	germinated seedlings. (a) Two weeks after incubation	
	(b) 4 weeks after incubation	73
Plate 4.5	Multiple shoot initiation from nodal segments taken from	
	seedlings after 6 weeks of incubation as a response to	
	GR (BA) treatments. (a) MS medium with 1.0 mg/L BA	
5	and (b) MS medium 1.5 mg/L BA	73

Plate 4.6	(a) Shoot multiplication and elongation under in vitro	
	conditions (b) and (c) Sub culture stages in multiplication	
Plate 4.7	(d) Shoot clusters ready to transfer root initiation media	76
	Shoot multiplication based on initial shoot cluster size (a)	
	with 2 shoots per propagule and (b) with 3 shoots per	
	propagule	79
Plate 4.8	(a) Shoot multiplication and elongation on liquid and	
	(b) Agarified media	80
Plate 4.9 (a)	Root initiation cultures under the growth room condition	82
Plate 4.9 (b)	A rooted shoot cluster of <i>in vitro</i> raised plantlet of <i>D. asper</i> .	82
Plate 4.10	Variation of root formation with initial shoot cluster size	84
Plate 4.11	Growth of micropropagated D. asper during acclimatization	
	(a) <i>in vitro</i> raised plants placed in 50 mm ³ coir pellets (b)	
	potted plantlets maintained for a month in humid chambers	
	(c) plantlets maintained in pellets under nursery condition	
	after removing the humid chamber and (d) plantlets	
	transferred to 1:1:1 (Compost: sand: coir dust) and	
	maintained for one month under nursery conditions	85
Plate 4.12	Field establishment of tissue cultured and seed raised plants of	
	D. asper (a) in the field at the initial stage (b) after one year	
	of establishment at the university botanical garden	91
Plate 4.13	Micropropagated D. asper plants growing at different field	
	establishment sites	96
Plate 4.14	Field study on morphological parameters	103

Plate 4.15	Preparation of specimens for measuring specific gravity values	
	of <i>D. asper</i>	109
Plate 4.16	Measuring diameter of mataxylem vessel and phloem sieve	
	tube in a vascular bundle of cross section of <i>D. asper</i> culm	112
Plate 4.17	Anatomical features of <i>D. asper</i> plants(a) culm cross section	
	(top part) of the tissue cultured plants (b) culm cross section	
	(top part) of the seed raised plants (c) culm cross section	
	(middle part) of the tissue cultured plants (d) culm cross section	
	(middle part) of the seed raised plants (e) culm cross section	
	(bottom part) of the tissue cultured plants (f) culm cross section	
	(bottom part) of the seed raised plants	113

V. LIST OF ABBREVIATIONS

BAP; BA 6-benzylaminopurine DBH Diameter at breast height FYM Farm Yard Manure Gibberellic acid GA₃ IBA Indole-3-butyric acid IAA Indole-3-acetic acid Kin Kinetin OSB Oriented Strand Board OSL Oriented Strand Lumber Murashige and Skoog's (1962) medium MS MSL Mean Sea Level α -naphthaleneacetic acid NAA TDZ Thidiazuron 2,4-dichlorophenoxyacetic acid 2,4-D

VI. ACKNOWLEDGMENT

I would like to express my sincere appreciation to all who has been involved in completion of my theses. First of all I wish to express my sincere gratitude to my supervisors Prof. (Mrs.) W.T.P.S.K. Senarath, Head of the Department, Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura and Prof. Hiran Amarasekara, Former Head of the Department, Professor, Department of Forestry and Environmental Sciences, Faculty of Applied Sciences, University of Sri Jayewardenepura, for their relentless guidance, continuous monitoring, supervision and critical comments and constant encouragement for the completion of the theses.

My sincere gratitude is also extended to my previous and present working places throughout the course of this study, Touchwood Investments PLC who initially financed for the USJP-TOUCHWOOD Biotechnology Research Project. Coordinating Secretariat for Science Technology and Innovation Sri Lanka (COSTI) where I had the opportunity to get good exposure to scientific community and literature for my research. Borneo Exotics pvt. LTD, for offering me a career opportunity at a time of need.

I wish to express my regards to everyone in all field establishment sites, without their assistance this work would be an uphill task.

I must thankfully remember Mr. Antonios Levissianos, Senior Industrial Development Officer and Dr. Victor Brias, Chief Technical Advisor of United Nations Industrial Development Organization for their encouragement to complete my studies. I wish to thank non-academic staffs of Faculty of Graduate Studies, Department of Chemistry, Department of Zoology, Department of Forestry and Environmental Sciences and everyone at the Department of Botany specially Mr. Wijesinghe and Mr. R. Kandambi, Senior Technical Officers for their assistance.

My thanks also extended to Mr. Udara Dissanayake and Miss. Samangi Hewage for assisting in statistical analysis and for technical support.

I also wish to thank Miss. R. Samarawickrama, Senior Assistant Librarian, University of Sri Jayewardenepura, Miss K. Peeris and Miss. V. Rajapakse, Education Assistants of Open University of Sri Lanka for providing me valuable references for this work. I also grateful to Jiffy Products, Sri Lanka and Techno-Aircon for their valuable support and material supply to complete this work.

My deep appreciations go out to my friends at the tissue culture laboratory Mr. Arosha Buddhapriya, Mr. Sanjika Herath, Mr. C. Somarathne, Miss. Thejani, Miss. Anuththara Abeywickrama, who helped me in numerous ways.

Last but not least my heartiest thank goes to my two kids Sasan and Harithashi who lost their fatherly care many times and my wife for understanding and bearing every difficulty at home and my father who single handedly raised six of us for long thirty years and still wishing the best things to happen on our way.

Mass propagation of *Dendrocalamus asper* through tissue culture and comparison of selected morphological, physical and anatomical features with seed raised plants

Priyantha Hemalal Chandrasena

ABSTRACT

Dendrocalamus asper is an introduced bamboo species adapted well into intermediate climatic conditions in Sri Lanka which has many uses of high economic and environmental importance. The objective of the present study was to develop a protocol for *in vitro* mass propagation, selecting suitable areas to grow the plant in the country and to investigate some of the macroscopic and microscopic properties of the micropropagated plants grown in the field to recommend suitability of the species as an alternative for growing demand of wood and wood based products.

Suitability of nodal segments from secondary branches of nursery maintained plants as explants were experimented as it is the most commonly available material, however higher level of microbial contaminations were observed. Therefore nodal segments from in vitro germinated seedlings were used. Maximum seed germination percentage achieved was 23.7%. MS with 1.0 mg/L BA was the best medium for shoot induction with high number of shoots (16.87 \pm 0.52), higher shoot length (4.12 \pm 0.27 cm) and with a mean of 4.80 \pm 0.33 leaves after 6 weeks of incubation. MS medium supplemented with 2.0 mg/L BA produced a mean number of 11.73 \pm 1.59 of shoots with 9.21 \pm 0.55 cm mean shoot length and 12.2 \pm 1.21 of mean leaf number after 6 weeks of incubation. It was observed that the shoot multiplication varies with the number of shoots in a cluster and three shoots per cluster produced higher number of elongated shoots with higher number of leaves. Liquid medium was found to be more suitable than solidified medium for multiplication. It was observed that 100% rooting could be obtained in the ½MS medium supplemented with 2.0 mg/L IBA after 6 weeks of incubation. Acclimatization could be achieved by transferring tissue cultured plantlets to 50 mm³ coir pellets and maintaining them in the humid chamber for one month and gradually exposing to 70% shade in the following month. Then, plantlets were transferred to potting mixture consisted of sand:compost:coir dust (1:1:1) and obtained 100% survival rate.

The growth pattern of tissue cultured plants in the field was compared with seed raised plants after one year of establishment in the field. Tissue cultured plants showed better growth in the field with significantly higher mean number of shoots, mean shoot length and the mean leaf number than seed raised plants. The increase in chlorophyll contents of both plant types was observed with time and slightly higher values observed in tissue cultured plants. In order to find suitable climatic area for the establishment of large scale plantations of D. asper in Sri Lanka, tissue cultured plants were established in twelve sites in different Geo-climatic zones. After one year of growth, they established well and showed healthy growth in all tested sites, however, significant differences in growth were observed at different sites. Gannoruwa area was found as the best for the growth of D. asper. Drier areas such as Jaffna and Hambantota also indicated that, plants could be well established, but showed low performances compare to the other sites. Some of the macroscopic and microscopic characteristics of four and half years old matured tissue cultured plants were compared with similar aged seed raised plants and indicated tissue cultured plants have similar or better qualities which proves the suitability of the end product for its wide array of commercially valuable uses. The protocol developed was able to reduce the cost of a plant to LKR 4.50.