The work described in this thesis was carried out by me under the supervision of Mr. J.M.D.T.Everard, Prof. H.G.Nandadasa and Prof. E.H. Karunanayake and a report on this has not been submitted to any University for another degree.

litt (P.N.Dasanayake)

We certify that the above statement made by the candidate is true and this thesis is suitable for submission to the University for the purpose of evaluation.

(Prof. H.G.Nandadasa)

. (Mr. J.M.D.T.Everard)

(Prof. E.H.Karunanayake)

Development of molecular markers for breeding and germplasm conservation of *Cocos nucifera* L.

by

Pinumkarage Nilanthie Dasanayake

Thesis submitted to the University of Sri Jayewardenepura for the award of the degree of Doctor of Philosophy in Botany on 20th of August 2002

TABLE OF CONTENTS

List of tables	vii
List of figures	xi
List of plates	xiv
Abbreviations	xv
Acknowledgement	xvii
Dedication	xx
Abstract	xxi
CHAPTER 1: INTRODUCTION	1
1.1 Coconut, the tree of life	1
1.2 Improvement of coconut's productivity	5
1.3 Constraints for coconut breeding	12
1.4 Molecular markers as an aid to enhance plant breeding	13
1.5 Objectives of the study	18
CHAPTER 2: LITRETURE REVIEW	20
2.1 Coconut palm	20
2.1.1 Taxonomy and classification	20
2.1.2 Distribution	21
2.1.3 Evolution	21
2.1.4 Dispersion	23
2.1.5 Genetic resources worldwide	23

2.2 Coconut genetic resources in Sri Lanka	24
2.3 Assessment of genetic diversity of coconut	27
2.4 Coconut breeding	31
2.5 Genome mapping	32
2.5.1 Importance of genetic maps	32
2.5.2 Classical method of mapping using phenotypic markers	32
2.5.3 Limitations in using phenotypic markers	33
2.5.4 Advantages of molecular markers in gene mapping	33
2.6 Molecular markers	34
2.6.1 Molecular marker methods	34
2.6.1.1 Restriction Fragment Length Polymorphisms (RFLPs)	35
2.6.1.2 Polymerase Chain Reaction (PCR)	36
2.6.1.3 Randomly amplified polymorphic DNA (RAPDs)	37
2.6.1.4 DNA amplification fingerprinting (DAF)	40
2.6.1.5 Simple sequence repeats (SSRs) or microsatellites	40
2.6.1.6 Sequence characterised amplified regions (SCAR)	43
2.6.1.7 Amplified fragment length polymorphisms (AFLP)	44
2.6.1.8 Single nucleotide polymorphisms (SNP)	47
2.6.2 Application of DNA assaying in coconut	48
2.7 Molecular marker based assessment of genetic diversity in plants	49
2.8 Application of molecular markers for identification of coconut's	
genetic diversity	55
2.9 Molecular marker based genome mapping	59
2.9.1 Framework maps	60

2.9.2 Mapping principles	60
2.9.3 MAPMAKER	61
2.9.4 JOINMAP	62
2.9.5 segregating populations	63
2.9.6 Linkage mapping of tree crops	64
2.10 Mapping of coconut genome	70
CHAPTER 3: MATERIALS AND METHODS	72
3.1 Materials	72
3.2 Methods	72
3.2.1 Understanding the organization of genetic variation in the	
coconut palm population in Sri Lanka.	72
3.2.1.1 Plant material	72
3.2.1.2 DNA extraction	80
3.2.1.2.1 Method I – SDS method	80
3.2.1.2.2 Method II – CTAB method	82
3.2.1.2.3 Quantification of DNA	84
3.2.1.3 Detection of RAPD profile	84
3.2.1.3.1 Preparation of templates for PCR	84
3.2.1.3.2 RAPD assay	85
3.2.1.3.2.1 Size and sequence of primers	85
3.2.1.3.2.2 The RAPD-PCR protocol	85
3.2.1.3.3 Detection of polymorphisms	86
3.2.1.3.4 Analysis of RAPD data	86

3.2.1.4 Detection of SSRP profile	88
3.2.1.4.1 DNA extraction	88
3.2.1.4.2 Primers	88
3.2.1.4.3 SSRP assay	88
3.2.1.4.4 Polyacrylamide gel electrophoresis for detection of SSRPs	90
3.2.1.4.5 Silver staining of polyacrylamide gels	90
3.2.1.4.6 Data analysis	91
3.2.1.5 Detection of AFLP profile	91
3.2.1.5.1 DNA extraction	91
3.2.1.5.2 Digestion of DNA	91
3.2.1.5.3 Adapter ligation	91
3.2.1.5.4 Preamplification	92
3.2.1.5.5 Selective amplification	92
3.2.1.5.6 Gel electrophoresis and staining of the gel	94
3.2.1.5.7 Data analysis	94
3.2.2 Preliminary study for developing molecular marker based map of	
coconut genome	94
3.2.2.1 Plant materials	94
3.2.2.2 DNA isolation	94
3.2.2.3 SSR primers	95
3.2.2.4 Selection of polymorphic SSR primers	96
3.2.2.5 SSR analysis	96
3.2.2.6 Data analysis	96
3.2.3 Construction of a genomic library of coconut in the phage vector λ zap	97

3.2.3.1 Plant materials and DNA isolation for genomic library construction	97
3.2.3.2 Partial digestion of coconut DNA	98
3.2.3.3 Ligation with λ zap vector	99
3.2.3.4 <i>In vitro</i> packaging of λ zap	99
3.2.3.5 Titration of the library	99
3.2.3.6 Amplification of coconut genomic library	100
3.2.3.7 Determination of the percentage of recombinants	101
3.2.3.8 Screening of library for the isolation of microsatellite containing clones	102
3.2.3.8.1 Transfer of DNA to nitrocellulose membrane	102
3.2.3.8.2 Labeling of (CA) ₈ oligomer	102
3.2.3.8.3 Hybridization	102
3.2.3.8.4 Autoradiography	103
CHAPTER 4: RESULTS	104
4.1 Assessment of the genetic variation in <i>ex-situ</i> conserved coconut	
germplasm in Sri Lanka	104
4.1.1 Detection of Randomly Amplified Polymorphic DNA (RAPD)	
for assessment of genetic diversity in coconut	104
4.1.2 Detection of Simple Sequence Repeat Polymorphisms (SSRPs)	
for assessment of genetic diversity in coconut	119
4.1.3 Detection of Amplified Fragment Length Polymorphisms (AFLPs)	
for assessment of genetic diversity in coconut	129
4.1.4 The organisation of the genetic structure of 43 coconut accessions	
assessed by the three marker systems, Randomly Amplified Polymorphic	

v

DNA (RAPD), Simple Sequence Repeat Polymorphisms (SSRP)	
and Amplified Fragment Length Polymorphisms (AFLPs)	138
4.2 Development of molecular marker based map of coconut genome	143
4.3 Construction of a genomic library of coconut	156
CHAPTER 5: DISCUSSION	157
5.1 Conservation of coconut germplasm in Sri Lanka	158
5.2 Characterization of Coconut germplasm using morphological descriptors	162
5.3 Characterization of Coconut germplasm using molecular markers	164
5.4 Randomly Amplified Polymorphic DNA (RAPD) markers in revealing	
genetic diversity of coconut in Sri Lanka	168
5.5 Simple Sequence Repeat (SSR) markers in revealing genetic diversity	
of coconut in Sri Lanka	171
5.6 Amplified Fragment Length Polymorphisms (AFLPs) in revealing	
genetic diversity of coconut in Sri Lanka	175
5.7 The organization of the genetic structure of 43 coconut accessions	
assessed by the three marker systems, Randomly Amplified	
Polymorphic DNA (RAPD), Simple Sequence Repeat Polymorphisms	
(SSRP) and Amplified Fragment Length Polymorphisms (AFLPs)	178
5.8 Development of molecular marker based map of coconut genome	185
5.9 Construction of coconut genomic library	188
5.10 Conclusions	188
References 19	
Appendix	230

vi

List of Tables

Table 1.1. Coconut land extent ('000 ha) in key producing countries in the world	2
Table 1.2. Coconut production ('000,000 nuts) in key producing countries in the	
World	3
Table 1.3. Coconut productivity (nuts/ha) in key producing countries in the world	4
Table 1.4. Coconut productivity (copra MT/ha) in key producing countries in the	
World	5
Table 1.5. Main coconut products and their production (Metric tons) worldwide	6
Table 1.6. Coconut hybrids produced in major coconut growing countries	
and their production potential	11
Table 2.1. Taxonomy, distinctive morphological and reproductive	
features of coconuts found in Sri Lanka	22
Table 2.2. Worldwide coconut germplasm sources and accessions conserved	25
Table 3.1. List of coconut accessions included in the study	73
Table 3.2. The OPERON random primers used for the detection of RAPDs	
for the assessment of genetic diversity of coconut accessions in	
Sri Lanka	87
Table 3.3. Sequence, annealing temperature and expected product size of	
seventeen SSR primers used for the SSR analysis	89
Table 3.4. Nucleotide sequences of adapters and primers used in AFLP assay	93
Table 3.5. Details of the mapping population	95
Table 3.6. Details of the primers used in detection of SSRPs in	
segregating populations of coconut.	97

Table 4.1. Details of the DNA fragments amplified by 100 decamer	
primers of Operon Technologies Limited Oligokits, with	
DNA isolated from tall, dwarf and San Ramon coconut	105
Table 4.2. The amplification products, polymorphisms and size ranges of	
DNA amplified from 43 coconut germplasm accessions by	
20 pre-selected Operon primers in RAPD-PCR	108
Table 4.3. The Nei and Li pair-wise genetic distance matrix based on	
RAPD band sharing of 43 coconut germplasm accessions	
conserved ex-situ in Sri Lanka as revealed by randomly	
amplified polymorphic DNA	115
Table 4.4. The organization of the genetic variation in 43 coconut	
germplasm accessions conserved ex-situ field gene banks of the	
Coconut Research Institute of Sri Lanka as revealed by randomly	
amplified polymorphic DNA (RAPD)	118
Table 4.5. SSR repetitive sequence, size of the alleles and number of	
alleles per locus of the 17 coconut microsatellite primers used	
to assess 43 coconut accessions	120
Table 4.6. The Nei and Li pair-wise genetic distance matrix based on	
SSRP band sharing of 43 coconut germplasm accessions	
conserved ex-situ in Sri Lanka as revealed by simple	
sequence repeat polymorphisms	126
Table 4.7. The organization of the genetic variation in 43 coconut germplasm	
accessions, conserved ex-situ field gene banks of the Coconut	

	Research Institute of Sri Lanka as revealed by simple	
	sequence repeat polymorphism (SSRP)	128
Table 4.8.	The ability of eight AFLP primer combinations to detect	
	polymorphisms in 43 coconut accessions	130
Table 4.9.	The Nei and Li pair-wise genetic distance matrix based on	
	AFLP band sharing of 43 coconut germplasm accessions	
	conserved ex-situ in Sri Lanka as revealed by amplified fragment	
	length polymorphisms	135
Table 4.10). The organisation of the genetic variation in 43 coconut	
	germplasm accessions conserved ex-situ field gene banks of	
	the Coconut Research Institute of Sri Lanka as revealed by	
	amplified fragment length polyporphism (AFLP)	137
Table 4.11	1. The genetically relatedness of coconut germplasm accessions	
	conserved in ex-situ field gene banks of the Coconut Research	
	Institute of Sri Lanka as identified by randomly amplified	
	polymorphic DNA (RAPD) and simple sequence repeat	
	polymorphisms (SSRP)	139
Table 4.12	2. The genetically relatedness of coconut germplasm accessions	
	conserved in ex-situ field gene banks of the Coconut Research	
	Institute of Sri Lanka as identified by randomly amplified	
	polymorphic DNA (RAPD) and amplified fragment length	
	polymorpham (AFLP)	140
Table 4.13	3. The genetically relatedness of coconut germplasm accessions	
	conserved in ex-situ field gene banks of the Coconut Research	

Institute of Sri Lanka as identified by simple sequence	
repeat polymorphisms (SSRP) and amplified fragment	
length polymorphisms (AFLP)	141
Table 4.14. The genetic relatedness of coconut germplasm accessions	
conserved in ex-situ field gene banks of the Coconut Research	
Institute of Sri Lanka as identified by randomly amplified	
polymorphic DNA (RAPD), simple sequence repeat	
polymorphisms (SSRP) and amplified length	
polymorphisms (AFLP)	142
Table 4.15. The average between and within genetic distances of major	
groups of coconut in Sri Lanka as revealed by randomly	
amplified polymorphic DNA (RAPD), simple	
sequence repeat polymorphisms (SSRP) and amplified	
fragment length polymorphisms (AFLP)	144
Table 4.16. The approximate size of each band, resolved length and the	
distance of gel progression by amplified DNA of each primer	
used for the development of map	145
Table 4.17.Segregation of 24 pairs of micro-satellite alleles in three F ₂ families	
arose from self-pollination of three individual tall x dwarf green (F_1)	
coconut palms at the Coconut Research Institute	150

x

List of Figures

Figure 4.1. Randomly amplified polymorphic DNA profiles of 40 coconut	
germplasm accessions conserved ex-situ in Sri Lanka generated	
by primer OPA16	109
Figure 4.2. Randomly amplified polymorphic DNA profiles of 40 coconut	
germplasm accessions conserved ex-situ in Sri Lanka generated	
by primer OPB10	110
Figure 4.3. Randomly amplified polymorphic DNA profiles of 40 coconut	
germplasm accessions conserved ex-situ in Sri Lanka generated	
by primer OPC08	111
Figure 4.4. Randomly amplified polymorphic DNA profiles of 40 coconut	
germplasm accessions conserved ex-situ in Sri Lanka generated	
by primer OPD12	112
Figure 4.5. Randomly amplified polymorphic DNA profiles of 40 coconut	
germplasm accessions conserved ex-situ in Sri Lanka generated	
by primer OPE02	113
Figure 4.6. Dendrogram of 43 ex-situ conserved coconut germplasms in Sri	
Lanka based on Nei and Li genetic distances calculated on	
RAPD band sharing ratio	116
Figure 4.7. Microsatellite polymorphisms in <i>ex-situ</i> conserved coconut	
germplasm accessions in Sri Lanka detected by the primer CNZ10	121

Figure 4.8. Microsatellite polymorphisms in <i>ex-situ</i> conserved coconut	
germplasm accessions in Sri Lanka detected by the primer CNZ10	122
Figure 4.9. Microsatellite polymorphisms in <i>ex-situ</i> conserved coconut	
germplasm accessions in Sri Lanka detected by the primer CNZ12	123
Figure 4.10. Microsatellite polymorphisms in <i>ex-situ</i> conserved coconut	
germplasm accessions in Sri Lanka detected by the primer CNZ12	124
Figure 4.11. Dendrogram of 43 ex-situ conserved coconut germplasms in Sri	
Lanka based on Nei and Li genetic distances calculated on	
SSRPs band sharing ratio	127
Figure 4.12. AFLPs generated from genomic DNA of 23ex-situ conserved	
coconut germplasm accessions in Sri Lanka using primer	
combination E10/M32	131
Figure 4.13. AFLPs generated from genomic DNA of 22 ex-situ conserved	
coconut germplasm accessions in Sri Lanka using primer	
combination E10/M32	132
Figure 4.14. AFLPs generated from genomic DNA of 24 ex-situ conserved	
coconut germplasm accessions in Sri Lanka using primer	
combination E11/M33	133
Figure 4.15. ALPs generated from genomic DNA of 23 ex-situ conserved	
coconut germplasm accessions in Sri Lanka using primer	
combination E11/33	134
Figure 4.16. Dendrogram of 43 ex-situ conserved coconut germplasms in Sri	

xii

	Lanka based on Nei and Li genetic distances calculated on	
	AFLP band sharing ratio	136
Figure 4.17.	SSR alleles detected by primer CAC65 and CNZ06 in	
	parents and F_1 individuals of the cross dwarf green x tall	
	coconut visualized in silver stained 6% polyacrylamide	
	denaturing gels	147
Figure 4.18.	Segregation of SSR alleles CNZ04, CAC08 and CNZ12 in F_2	
	Individuals derived by selfing dwarf green x tall F1 coconuts	148

List of Plates

Plate 1.	Sri Lanka Tall coconut	76
Plate 2.	Sri Lanka Dwarf Green coconut	77
Plate 3.	San Ramon (Clovis) coconut	78
Plate 4.	Nut Characteristics of three phenotypically distinct coconuts,	
	Sri Lanka Tall, San Ramon (Clovis) and Sri Lanka Dwarf Green	79

Abbreviations

AFLP	Amplified Fragment Length Polymorphisms
bp	base pair
cDNA	complementary DNA
CGIAR	Consultative Group on International Agricultural Research
CGRD	Coconut Genetic Resource Database
COGENT	Coconut Genetic Resource Network
cM	centi Morgan
CRI	Coconut Research Institute
DAF	DNA Amplification Fingerprinting
DNA	Deoxyribo Nucleic Acid
dNTP	Deoxy Nucleotide Triphosphate
ISTR	Inverse Sequence Tagged Repeat
kb	kilo base
PCR	Polymerase Chain Reaction
RAPD	Randomly Amplified Polymorphic DNA
RFLP	Restriction Fragment Length Polymorphisms
QTL	Quantitative Trait Loci
SCAR	Sequence Characterized Amplified Region
SNP	Single Nucleotide Polymorphism
SSRP	Simple Sequence Repeat Polymorphism

TAC Technical Advisory Committee

UPGMA Unweighted Paired Group Method of Arithmetic mean

UV Ultra Violet

Acknowledgement

I am greatly indebted to my supervisors, Prof. H.G. Nandadasa, Mr. J.M.D.T.Everard and Prof. E.H Karunanayake for their continuously invaluable guidance, useful suggestions, encouragement and timely criticisms throughout the project period.

I am especially grateful to Mr. J.M.D.T. Everard, Senior Geneticist, Coconut Research Institute for teaching me all molecular biology lab techniques even from the handling of micropipette and for his significant contribution to all steps of this work from preparation of project proposal to finishing up of this thesis.

I sincerely thank Prof. E.H.Karunanayake, Faculty of Medicine, University of Colombo for giving me the opportunity to carry out this project in his fully equipped laboratory providing all the facilities.

I wish to express my gratitude to Prof. H.G Nandadasa, Prof. of Botany, University of Sri Jayewardenepura for making of the arrangements to get this opportunity to carry out this research by introducing me to Prof. E.H.Karunanayake and Mr. J.M.D.T. Everard and help given to me to manage my work as a lecturer in his Department during the project period.

I am thankful to Dr. L. Perera, Mrs. C.K. Bandaranayake and Miss. C. Perera from coconut research institute for their useful suggestions, continuos support and friendship throughout this research.

I would like to thank technical staff of the genetics and plant breeding division of coconut research institute for their, support given me in coconut leaf sampling and DNA extractions and to all other in the division for their kind co-operation during this research.

I am indebted to Dr. S. Wijesundera and other members of the academic staff and Mr. C.S.P. Abeysinghe and other members of the technical staff, all other laboratory staff of Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo for their advices and assistance respectively.

I am grateful Mr. J. Weerasena and Dr.S. Jeevathayaparan for the advices and support given to me throughout this period.

Enormous thanks are due to Niroshini, Mewan, Priyanthi, Nishamini, Varuna, Mahendra, Shiromi, Tisira, Deishini, Amali, Danushki, Anouka and Dulika for their generosity, friendship and immeasurable support offered to me.

I am thankful to Mr. John Amstrong, of the Australian National University, Canbera, Australia for providing the genetic distance analysis software package (RAPDistance) for data analysis.

I am indebted to Dr. P. Fernando, Head of the Department and all other academic staff of Department of Botany, University of Sri Jayewardenepura for their invaluable advices and support given to me to carryout my work in the Department and especially for their patience in my absence in most of the departmental work during the project period.

My heartful thanks goes to my husband, brothers and parents for their encouragement and support given to me during this work.

This work was supported by the Swedish Agency for Research Cooperation with Developing Countries (SAREC) grant for Capacity Building in Biotechnology awarded to Prof. E.H. Karunanyake of Faculty of Medicine, University of Colombo. I dedicate this thesis to my parents and husband

Development of molecular markers

for breeding and germplasm conservation of Cocos nucifera L.

P.N.Dasanayake

ABSTRACT

Coconut Research Institute (CRI) of Sri Lanka has made a concerted effort with the Coconut Genetic Resources Network (COGENT) of the International Plant Genetic Resources Institute (IPGRI) to conserve coconut germplasm in the country and consequently, around 100 accessions were conserved *ex-situ* in CRI gene banks as rejuvenated populations from islandwide coconut collections. Understanding the true genetic variation of these accessions was an important requirement for effective management and utilization of coconut germplasm in the country. Due to high environmental dependence of morphological descriptors, powerful DNA techniques, randomly amplified polymorphic DNA (RADP), simple sequence repeat polymorphisms (SSRP) and amplified fragment length polymorphisms (AFLP) were applied to elucidate genetical relationships of coconut genetic resources in the country.

A sample of 43 coconut accessions comprising 19 distinct phenotypes [7 tall (*typica*), 9 dwarf (*nana*) and 3 thembili (*aurantiaca*) forms], 7 San-Ramon tall-like ecotypes and 17 Sri Lanka tall ecotypes were used in the assessment. For RAPD assessment, 20 Operon primers selected from 100 primers belonging to OPERON kits A, B, C, D and E were

used. The selected primers readily amplified coconut DNA generating 186 amplification products averaging 9.3 bands per primer. Among the bands, 166 exhibited polymorphisms (89.25%) averaging 8.3 polymorphic bands per primer. The Nei and Li pair-wise genetic distance matrix revealed a narrow genetic base in the coconut in Sri Lanka with distances ranging from 0.07-0.43 with an average distance of 0.24. RAPDs revealed genetic relationships of the 43 accessions to a certain degree but failed to explain the entire variation accurately.

Seventeen pairs of coconut specific micro-satellite primers were used for detection of simple sequence repeat polymorphisms in the 43 accessions. The primers detected 82 alleles with an average of 4.8 alleles per locus ranging from 2 to 10. All alleles were polymorphic within the 43 genotypes analyzed. Eight accession-specific-alleles were found in six accessions. Genetic distances among the accessions ranged from 0.13 to 1.0 with an average of 0.63. The SSR polymorphisms clearly revealed the genetical organization of the coconut in the country unveiling much important kinship that could be related to accepted theories of evolution and dissemination of coconut.

Amplified fragment length polymorphisms were also detected among the accessions using eight *Eco*RI and *Mse*1 selective primer combinations. A total of 221 fragments were obtained of which 163 (73.75%) exhibited polymorphism. The average number of scorable bands per primer combination was 27.6 with 34 maximum and 20 minimum bands per primer combination. The genetic distances ranged from 0.05 to 0.25 with an

average of 0.13. The AFLPs too failed to discriminate coconut germplasm accurately although aptly identified the relationship of a number of close groups.

The results of the three systems generated adequate information to shed light on understanding the underlying genetic variation in the coconut palm population in Sri Lanka well in par with the roots of coconut evolution and sources of probable introduction to the country superceding the current morphological-descriptor-based relationships. According DNA polymorphisms, coconut population in Sri Lanka predominantly consists of widely grown Sri Lanka tall resembling a genome similar to coconuts from Africa and India. Few other collections of coconut, dwarf and San Ramon and San-Ramon-like type coconut populations represent a South East Asian or Pacific genome. All the germplasm accessions of Sri Lanka tall share a similar genome indicating a narrow genetic variation within them probably resulted from genetic constriction due to domestication. The results led to readjustment of taxonomic status of two Sri Lanka tall coconut forms, Bodiri and Ran Thembili, as they appeared to have a different genome more similar to that of SEA or Pacific coconuts. The dwarf coconuts distinguished by colour of seed coat largely shared a genome common to all dwarf coconuts worldwide, which too is more close to coconuts in the Pacific and South East Asia where coconut was believed to have originated. King coconut in Sri Lanka currently considered as an intermediate between Sri Lanka Tall and Sri Lanka Dwarf coconuts is certain to be a dwarf and not a distinct group between tall and dwarf. Tall coconuts other than Sri Lanka Tall such as San Ramon (Clovis), Nipuni and Indian have

demonstrated genomes that are more common to coconuts from Pacific and South East Asia.

The results had important implications on effective conservation and utilization of coconut germplasm. It is clear that widening of gene banks by further random sampling of Sri Lanka Tall is futile, as the assessed ecotypes did not show much variation within themselves or any kind of genetic isolation. Therefore, searching for phenotypically distinct populations in the country appears a more sensible sampling approach for effective conservation of coconut in the country. The sampling size of *ex-situ* conserved coconut populations too can be minimized to reduce the cost of conservation, which is very high for coconut.

The prioritization of crosses for testing hybrid vigor based on genetic distance was another important implication although significant results have been already achieved in the coconut-breeding programme of the Coconut Research Institute by testing combinations of crosses between the most distant, Sri Lanka Tall, Sri Lanka Dwarf and San Ramon. Therefore the present data strongly suggest the need for germplasm enrichment by introducing more tall coconuts from diverse populations in the Pacific and South East Asian where coconut palm populations still appear to maintain wild genes, which were lost during domestication in the African region.

The preliminary study carried out towards developing a genome map of coconut surfaced following useful information. The potential of SSRs was promising and the need for construction of at least another 50 pairs of coconut specific micro-satellite primers was a high research priority. The legitimacy of crosses and correct identification of progeny is also found to be a matter of concern because of high rate of contaminants in segregating populations available for study. Therefore, it is necessary to construct more populations giving emphasis on careful execution of pollination programs, accurate labeling of seedlings in the nursery and scoring of individuals in segregating families for phenotypic characters in carefully designed field experiments with minimum environment variability.