NOVEL CARDIOVASCULAR RISK MARKERS PARAOXONASE, APOLIPOPROTEIN A-1 (Apo A-I) AND GLUTATHIONE PEROXIDASE GENOTYPE-1 IN CORONARY ARTERY DISEASE

By

WICKRAMASINGHEGE DINUSHKA

WICKRAMASINGHE

M.Phil 2014
NOVEL CARDIOVASCULAR RISK MARKERS
PARAOXONASE, APOLIPOPROTEIN A-1 (Apo A-I) AND
GLUTATHIONE PEROXIDASE GENOTYPE – 1 IN
CORONARY ARTERY DISEASE

By

WICKRAMASINGHEGE DINUSHKA WICKRAMASINGHE

Thesis submitted to the University of Sri Jayewardenepura for the Degree of Master of Philosophy in Biochemistry on 18th August 2014.
DECLARATION BY THE CANDIDATE

The work in this thesis was carried out by me under the supervision of Professor Hemantha Peiris (Professor of Biochemistry, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura), Professor Lal Chandrasena (Emeritus Professor, Department of Biochemistry, University of Kelaniya; Director, Clinical Laboratory, Nawaloka Hospitals PLC, Colombo), Dr. Vajira Senarathne (Consultant Cardiologist, Cardiology Unit, National Hospital, Colombo) and Dr. P. P. Rasika Perera (Senior Lecturer, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and a report on this has not been submitted in whole or in part to any University or any other institution for another Degree/Diploma.

Wickramasinghege Dinushka Wickramasinghe

Date
DECLARATION BY THE SUPERVISORS

We certify that the above statement by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation.

Professor Hemantha Peiris
BVSc, M.Phil, PhD (QID.Aus)
(Supervisor)

Professor L.G. Chandrasena
BSc, PhD, FRSC, FI chemC, FACB
(Supervisor)

Dr. Vajira Senaratne
MBBS, MD, FRCP
(Supervisor)

Dr. P. P. Rasika Perera
MBBS, PhD
(Supervisor)

Date: 19.02.2015
We certify that the candidate performed all the corrections as suggested by the examiners.

Professor Hemantha Peiris
BVSc, M.Phil, PhD (QID.Aus)
(Supervisor)

Professor L.G. Chandrasena
BSc, PhD, FRSC, FI chemC, FACB
(Supervisor)

Dr. Vajira Senaratne
MBBS, MD, FRCP
(Supervisor)

Dr. P. P. Rasika Perera
MBBS, PhD
(Supervisor)
Dedication

I dedicate this thesis to

my wife Sugandika, parents and teachers.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of plates</td>
<td>xv</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xvi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xix</td>
</tr>
<tr>
<td>Abstract</td>
<td>xxii</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 General introduction

1.2 Atherosclerosis and coronary artery disease

1.3 Risk factors associated with coronary artery disease

1.3.1 Non modifiable coronary artery disease risk factors

1.3.1.1 Age

1.3.1.2 Gender

1.3.1.2 Family history

1.3.1.2 Ethnicity

1.3.2 Modifiable CAD risk factors

1.3.2.1 Hyperlipidemia

1.3.2.2 Hypertension

1.3.2.3 Effect of diabetes mellitus

1.3.2.4 Effect of smoking
1.3.2.5 Effect of physical inactivity
1.3.2.6 Obesity and overweight
1.3.2.7 Alcohol

1.4 Reactive Oxygen Species (ROS)
1.4.1 Introduction
1.4.2 Varieties of ROS
1.4.3 Adverse effect of ROS
1.4.4 Defense system against ROS
1.4.5 Association of ROS in oxidative stress

1.5 Oxidative stress and coronary artery disease

1.6 Antioxidants
1.6.1 Non enzymatic antioxidants
1.6.1.1 Vitamin A
1.6.1.2 Vitamin C (Ascorbic acid)
1.6.1.3 Vitamin E
1.6.2 Enzymatic antioxidants
1.6.2.1 Catalase
1.6.2.2 Superoxide dismutase
1.6.2.3 Glutathione Peroxidase
1.6.2.4 Paraoxonase

1.7 Apolipoprotein A-1

1.8 Novel risk markers of coronary artery disease

1.9 Justification

1.10 Objectives
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.10.1</td>
<td>General Objective</td>
<td>21</td>
</tr>
<tr>
<td>1.10.2</td>
<td>Specific Objectives</td>
<td>21</td>
</tr>
<tr>
<td>2.</td>
<td>LITERATURE REVIEW</td>
<td>22</td>
</tr>
<tr>
<td>2.1</td>
<td>Paraoxonase-1 and coronary artery disease</td>
<td>22</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Human Paraoxonase-1</td>
<td>22</td>
</tr>
<tr>
<td>2.1.1.1</td>
<td>Introduction of Paraoxonase-1</td>
<td>22</td>
</tr>
<tr>
<td>2.1.1.2</td>
<td>Isozymes of Paraoxonase</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1.2.i</td>
<td>Paraoxonase-1</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1.2.ii</td>
<td>Paraoxonase-2</td>
<td>24</td>
</tr>
<tr>
<td>2.1.1.2.iii</td>
<td>Paraoxonase-3</td>
<td>24</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Metabolism of Paraoxonase-1</td>
<td>24</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Biochemical function of PON-1</td>
<td>26</td>
</tr>
<tr>
<td>2.1.3.1</td>
<td>Detoxification of toxic compounds</td>
<td>26</td>
</tr>
<tr>
<td>2.1.3.2</td>
<td>Effect on Oxidized LDL-C</td>
<td>27</td>
</tr>
<tr>
<td>2.1.3.3</td>
<td>Prevention of Accumulation of Lipid Peroxides</td>
<td>27</td>
</tr>
<tr>
<td>2.1.3.4</td>
<td>Inhibition of cholesterol Influx</td>
<td>28</td>
</tr>
<tr>
<td>2.1.3.5</td>
<td>Multiple antiatherogenic effects</td>
<td>28</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Serum paraoxonase-1 concentration</td>
<td>29</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Factors affecting paraoxonase-1 activity</td>
<td>29</td>
</tr>
<tr>
<td>2.1.5.1</td>
<td>Genetic factors of paraoxonase-1</td>
<td>29</td>
</tr>
<tr>
<td>2.1.5.2</td>
<td>Oxidative stress and paraoxonase-1 activity</td>
<td>30</td>
</tr>
<tr>
<td>2.1.5.3</td>
<td>Other contributory factors affecting paraoxonase-1 activity</td>
<td>31</td>
</tr>
<tr>
<td>2.1.5.3.i</td>
<td>Age</td>
<td>31</td>
</tr>
<tr>
<td>2.1.5.3.ii</td>
<td>Gender</td>
<td>32</td>
</tr>
</tbody>
</table>
2.1.5.3.iii Smoking 32
2.1.5.3.iv Alcohols 32
2.1.5.3.v Diet 33
2.1.5.3.vi Effect of Chemicals and metal ions on Paraoxonase-1 34
2.1.5.3.vii Drugs affecting Paraoxonase-1 34
2.1.6 Paraoxonase-1 and its association with coronary artery disease 35
2.1.6.1 Antiatherogenic role of Paraoxonase 1 35
2.1.6.2 Low Paraoxonase-1 as a risk factor for coronary artery disease 36
2.1.7 Association of Paraoxonase-1 and physiological or pathological conditions other than coronary artery disease

2.2 Glutathione Peroxidase and coronary artery disease 40
2.2.1 Human Glutathione Peroxidase 40
2.2.1.1 Introduction 40
2.2.1.2 Isozymes of Glutathione Peroxidase 42
2.2.1.2.i Glutathione Peroxidase-1 42
2.2.1.2.ii Glutathione Peroxidase-2 43
2.2.1.2.iii Glutathione Peroxidase-3 44
2.2.1.2.iv Glutathione Peroxidase-4 44
2.2.2 Genetic variants of Glutathione Peroxidase 1 45
2.2.3 Biochemical mechanism of Glutathione Peroxidase 46
2.2.4 Factors affecting Glutathione Peroxidase activity 48
2.2.4.1 Glutathione Peroxidase 1 genetic variants and disease 48
2.2.4.2 Oxidative stress 49
2.2.4.3 Effect of chemicals 50
2.2.4.4 Effect of smoking 50
2.2.5 Glutathione Peroxidase activity and coronary artery disease 50
2.2.6 Association of Glutathione Peroxidase with other diseases 51

2.3 Apolipoprotein A-1 and coronary artery disease 54

2.3.1 Human Apolipoprotein A-1 54

2.3.1.1 Introduction 54
2.3.1.2 Structure and metabolism of Apolipoprotein A-1 55
2.3.1.3 Biochemical function of Apolipoprotein A-1 56

2.3.1.3.i Stimulation of reverse cholesterol transport 57
2.3.1.3.ii Scavenging effect on toxic phospholipids 58
2.3.1.3.iii Antioxidant effect of HDL and apolipoprotein A-I 58
2.3.1.3.iv Anti-inflammatory effects of HDL and apolipoprotein A-I 58
2.3.1.3.v Effect of HDL and Apolipoprotein A-I in autoimmunity 58

2.3.2 Factors affecting Apolipoprotein A-1 59

2.3.2.1 Medicinal drugs 59

2.3.2.1.i Niacin (Vitamin B3) 59
2.3.2.1.ii Statins 60

2.3.3 Apolipoprotein A-1 and association with coronary artery disease 60

2.3.3.1 Antiatherogenic role of Apolipoprotein A-1 60
2.3.3.2 Low Apolipoprotein A-1 and coronary artery disease 62

3. MATERIALS AND METHOD 63

3.1 Chemicals and reagents 63

3.1.1 Water 63
3.1.2 Chemicals 63
3.1.3 Special chemicals/ reagents 63

3.2 Methods 64

3.2.1 General laboratory practice 64

3.2.2 Selection of subjects 64

3.2.2.i Patients 64

3.2.2.ii Controls 64

3.2.3 Sample size calculation 65

3.2.4 Criteria of subject selection 65

3.2.4.1 Inclusion criteria for patients 65

3.2.4.2 Inclusion criteria for controls group 65

3.2.5 Study design 65

3.2.6 Study settings 66

3.2.6.i Recruitment of patients 66

3.2.6.ii Recruitment of controls 66

3.2.6.iii Clinical Laboratories 66

3.2.7.1 Collection of blood samples 66

3.2.7.2 Data collection 67

3.2.8 Quantitative analysis of Glutathione Peroxidase activity 71

3.2.8.1 Reaction principle (Randox Ransel assay kit) 71

3.2.8.2 Calibration 72

3.2.8.3 Quality control 72

3.2.9 Quantitative analysis of Glutathione Peroxidase 1 73

3.2.9.1 Reaction principle (North West Life Science assay kit) 74

3.2.10 Quantitative analysis of serum Paraoxonase 1 concentration 75
3.2.10.1 Reaction principle (USCN life sciences ELISA assay kit) 75
3.2.10.2 Calibration 76
3.2.11 Quantitative analysis of serum Apolipoprotein A-I 76
3.2.11.1 Reaction principle 76
3.2.11.2 Calibration 76
3.2.11.3 Quality control 77
3.2.12 Genotyping to detect Pro198Leu polymorphisms of Glutathione Peroxidase 1
3.2.12.1 Polymerase chain reaction / restriction fragment length polymorphism 77
3.2.12.2 DNA extraction 78
3.2.12.3 Polymerase Chain Reaction (PCR) 79
3.2.12.3.i Principle of PCR 79
3.2.12.3.ii Procedure of PCR 80
3.2.12.4 Restriction Fragment Length Polymorphism (RFLP) 81
3.2.12.5 Agarose gel electrophoresis 82
3.2.13 Quality control 82
3.2.13 Assessment of severity of coronary artery disease 83
3.2.13.1 Coronary angiography 83
3.2.13.2 Severity of coronary artery disease 83
3.2.13.2.i Calculation of vessel score 83
3.2.13.2.ii Calculation of stenosis score 84
3.2.13.2.iii Calculation of extent score 84
3.2.14 Data processing and statistical analysis 85
3.2.15 Ethical consideration

4. RESULTS

4.1 Associations between coronary artery disease and serum paraoxonase levels

4.1.1 Characteristic of subjects

4.1.2 Association between serum paraoxonase 1 level and coronary artery disease

4.2 Associations between coronary artery disease and erythrocyte Glutathione peroxidase activity

4.3 The association between coronary artery disease and Apolipoprotein A-1

4.4 Severity of coronary artery disease in the patients.

4.4.1 Summary of associations between severity of coronary artery disease and paraoxonase-1, Glutathione Peroxidase and Apolipoprotein A-1

4.5 Association of Glutathione Peroxidase-1 genotype (Pro198Leu polymorphism) and coronary artery disease

4.5.1 Association of glutathione peroxidase 1 activity with GPX-1 Pro198Leu polymorphism.

4.5.2 Association of scoring systems of CAD severity with GPX-1 Pro198Leu genotypes.

4.6 Associations of risk models for coronary artery disease in study population by multivariate logistic regression analysis

5. DISCUSSION
5.1 Association of traditional risk factors and coronary artery disease.

5.2 Association of Paraoxonase 1 concentration with coronary artery disease

5.3 Association of Apolipoprotein A-I concentration with coronary artery disease

5.4 Association of Glutathione peroxidase activity with coronary artery disease

5.5 Associations of Glutathione peroxidase 1 activity, GPX-1 Pro198leu polymorphism with coronary artery disease

5.6 Summary of the associations of Paraoxonase 1, Glutathione peroxidase and Apolipoprotein A-I levels with severity of coronary artery disease

6. CONCLUSIONS

7 REFERENCES

8 APPENDICES

Appendix 1: List of publications and communications from this thesis

Appendix 2: Questionnaire/ Data sheet

Appendix 3: Ethical clearance

Appendix 4: Information sheet used for patients (English)

Appendix 5: Information sheet used for patients (Sinhala)

Appendix 6: Information sheet used for controls (English)

Appendix 7: Information sheet used for controls (Sinhala)
Appendix 8: Research consent form used for patients (English) 212
Appendix 9: Research consent form used for patients (Sinhala) 214
Appendix 10: Research consent form used for controls (English) 216
Appendix 11: Research consent form used for controls (Sinhala) 218
LIST OF TABLES

Table 4.1 Demographics and Anthropometric characteristics of patients and controls. 87
Table 4.2 Demographic features and distribution of classical risk factors of patients and controls 88
Table 4.3 Distribution of body mass index among two age groups of the study population 89
Table 4.4 Paraoxonase 1 concentrations between patients and controls 91
Table 4.5 Correlation between paraoxonase 1 concentration and age of the study population 91
Table 4.6 PON-1 concentrations among two age groups of the study population 93
Table 4.7 Glutathione peroxidase activities between patients and controls 95
Table 4.8 Relationships of GPX-1 Vs GPX in patients and controls 96
Table 4.9 Correlation between glutathione peroxidase activity and age in the study population 98
Table 4.10 Apolipoprotein A-i concentrations in patients and controls 101
Table 4.11 Correlation between apolipoprotein A-i concentrations and age in the study population 101
Table 4.12 Ratio of apolipoprotein A-i to Paraoxonase 1 concentration in patients and controls 102
Table 4.13 Frequency distributions of the three severity-score systems in 104
patients with CAD.

Table 4.14 Severity of CAD in patient group

Table 4.15 Association of Paraoxonase 1, Glutathione peroxidase and apolipoprotein A-1 concentrations with severity of CAD

Table 4.16.1 Differences of PON-1, GPX, GPX-1, Apo A-1 levels in vessel score of severity of CAD.

Table 4.16.2 Differences of PON-1, GPX, GPX-1, Apo A-1 levels in stenosis score of severity of CAD.

Table 4.16.3 Differences of PON-1, GPX, GPX-1, Apo A-1 levels in extent score of severity of CAD.

Table 4.17 Paraoxonase 1, Glutathione peroxidase, Apolipoprotein A-1 levels between patients awaiting PTCA (n=54) and CABG (n=21).

Table 4.18 Frequency distribution of Glutathione peroxidase 1 variants in study subjects

Table 4.19a Allelic frequency of GPX1 Pro198Leu polymorphism in patients and controls

Table 4.19b Calculation of Hardy Weinberg Equilibrium (HWE) for GPX-1 Pro198Leu polymorphism frequency distribution.

Table 4.20 Association of GPX-1 Pro198Leu polymorphism for CAD in two age groups.

Table 4.21 Association of glutathione peroxidase 1 activity with GPX1 Pro198Leu polymorphism.

Table 4.22 Association of GPX-1 Pro198Leu polymorphism with severity of coronary artery disease

xii
Table 4.23 Associations of risk models for coronary artery disease in study 126 population by multivariate logistic regression analysis

Table 4.24 Associations of risk models for CAD in age ≤ 50 years group in the study population by multivariate logistic regression analysis.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Glutathione peroxidase reduction cycle.</td>
<td>41</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Distribution of paraoxonase 1 concentration with age in patients with CAD</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Distribution of paraoxonase 1 concentration with age in controls</td>
<td>92</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Relationship between total GPX and GPX-1 activity in patients</td>
<td>97</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Relationship between total GPX and GPX-1 activities in controls</td>
<td>97</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Distribution of total glutathione peroxidase activity with age in patients and controls</td>
<td>99</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Distribution of glutathione peroxidase 1 activity with age in patients and controls</td>
<td>99</td>
</tr>
</tbody>
</table>
LIST OF PLATES

Plate 3.1 Amplified DNA after polymerase Chain Reaction 115
Plate 3.2 Agarose gel electoporesis image of restriction fragment length 116 polymorphism
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCA1</td>
<td>ATP Binding cassette A1</td>
</tr>
<tr>
<td>ABCG1</td>
<td>ATP Binding cassette G1</td>
</tr>
<tr>
<td>AMI</td>
<td>Acute Myocardial Infarction</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>Apo A-1</td>
<td>Apolipoprotein A-1</td>
</tr>
<tr>
<td>Apo J</td>
<td>Apolipoprotein J</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BP</td>
<td>Blood Pressure</td>
</tr>
<tr>
<td>CABG</td>
<td>Coronary Artery Bypass Grafting</td>
</tr>
<tr>
<td>CAD</td>
<td>Coronary Artery Disease</td>
</tr>
<tr>
<td>CRP</td>
<td>C- Reactive protein</td>
</tr>
<tr>
<td>Cys</td>
<td>Cysteine</td>
</tr>
<tr>
<td>DBP</td>
<td>Diastolic blood pressure</td>
</tr>
<tr>
<td>DM</td>
<td>Diabetes mellitus</td>
</tr>
<tr>
<td>dNTP</td>
<td>di Nucleotide Tri Phosphate</td>
</tr>
<tr>
<td>GI</td>
<td>Gastro Intestinal</td>
</tr>
<tr>
<td>Glu</td>
<td>Glucose</td>
</tr>
<tr>
<td>Gly</td>
<td>Glysine</td>
</tr>
<tr>
<td>GPX</td>
<td>Glutathione Peroxidase</td>
</tr>
<tr>
<td>GR</td>
<td>Glutathione Reductase</td>
</tr>
<tr>
<td>GSH</td>
<td>reduced glutathione</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>GSSG</td>
<td>Oxidized glutathione</td>
</tr>
<tr>
<td>HDL-C</td>
<td>High density lipoprotein cholesterol</td>
</tr>
<tr>
<td>HRP</td>
<td>Horse radish peroxidases</td>
</tr>
<tr>
<td>IHD</td>
<td>Ischemic heart disease</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo dalton</td>
</tr>
<tr>
<td>KO</td>
<td>Knockout mice</td>
</tr>
<tr>
<td>LDL-C</td>
<td>Low density lipoprotein cholesterol</td>
</tr>
<tr>
<td>Leu</td>
<td>Leucine</td>
</tr>
<tr>
<td>Lp (a)</td>
<td>Lipoprotein (a)</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>PAF</td>
<td>Platelet activate factor</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PON</td>
<td>Paraoxonase</td>
</tr>
<tr>
<td>PTCA</td>
<td>Percutaneous trans coronary angioplasty</td>
</tr>
<tr>
<td>RCT</td>
<td>Reverse cholesterol transport</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction fragment length polymorphism</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SBP</td>
<td>Systolic blood pressure</td>
</tr>
<tr>
<td>Se</td>
<td>Selenium</td>
</tr>
<tr>
<td>Acronym</td>
<td>Explanation</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>SNP</td>
<td>Small Nucleotide Polymorphism</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health organization</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

I wish to thank all who contributed in different ways to the work involved in this thesis. First and foremost, I would like to give my sincere thanks to my supervisor Professor Hemantha Peiris (Professor of Biochemistry, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) for his tremendous help and supervision. His wise and expert guidance, timeless effort, vast academic knowledge, and consistent patience throughout my entire study are invaluable. I also appreciate his understanding, support, and encouragement at tough times in my life; I cannot possibly imagine how my life would have been without his support and encouragement. Our stimulating discussions and his goal-orientated research approach essentially added to my scientific success. He has taught me much about scientific methodology, research, and medicine, but most importantly, I can say that he has taught me as much about life as my parents have and helped me recognize the aspects of the academic life. I am honored to be his M.Phil student; his future postgraduate students will be extremely fortunate and blessed.

I express my sincere gratitude to Professor L. G. Chandrasena (Director, Clinical Laboratory, Nawaloka Hospital PLC, Colombo 02) for his invaluable guidance throughout the research project and especially for granting permission to carry out my study at Nawaloka Hospitals PLC, Colombo 2, Sri Lanka.

My special thanks go to Dr. Vajira Senaratne (Consultant Cardiologist, National Hospital, Colombo) for help extended to me in recruitment of patients, and assistance given in reading the angiograms.

I am sincerely grateful to Dr. P. P. Rasika Perea (Senior Lecturer, Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) for his
valuable guidance, critical discussions, continued advice and suggestions for my research and scientific writing with continuous supports and consideration.

Many thanks also go to Mr. Nandika (Senior Scientist, GENETECH private Ltd, Colombo 8) for giving me genetic analyses practice and suggestions regarding experiment designs. I also appreciate him for excellent supervision, training given to me in carrying out the genetic analyses and especially for giving me the opportunity to utilize the facilities available at their institution.

I also wish to thank Prof. Shivayogan, Dr. Wijesiri and Dr. Shamini Prathapan for their kind support, encouragement, timely help and advice on statistical analysis.

I want to thank all collaborators from several institutes for their scientific and personal impact on my work:-

Cardiothoracic surgeons and Nurses of Cardiology Unit, National Hospitals, Colombo for assistance given in recruitment of patients and sampling.

Nawaloka Hospitals PLC Colombo and Nawaloka Metropolis Laboratories for giving me the opportunity to utilize the facilities available at the pathology laboratory and Dr. Takhar, Mr. Anton Fernando and the technical staff of the pathology laboratory for training me in the operation of laboratory instruments.

All staff members of the Family Practice Centre, Faculty of Medical Sciences, University of Sri Jayewardenepura for granting recruitment of healthy volunteers and allowing utilize available facilities of the laboratory.

Many thanks also go to all subjects for volunteering to take part in this study, without whom this study would have been impossible.

With finishing this thesis, I worked at the Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura. It was and still is a great place for
research with enthusiastic people looking forward to collaborate and to support. Therefore, I want to give special thanks to all staff members of academic and nonacademic.

I am grateful to National Research Council grant 11-015 which helped me in covering part of the cost of the study.

Finally, I would like to express my special thanks to my wife, Sugandika and my parents and parents-in-law for their love, prayers, sacrifices and endless support over the years.

Thank you all!

Wickramasinghe Dinushka Wickramasinghe

ABSTRACT

Introduction: Coronary artery disease (CAD) is one of the major causes of mortality in both developed and developing countries. Oxidative stress has been demonstrated to have a role in pathogenesis of atherosclerosis. Reactive oxygen species (ROS) formed during oxidative stress result in oxidation of proteins and lipids of the cell membrane, leading to endothelial injury and microvascular dysfunction. Thus, the present study was designed to assess the relationship between severity of CAD as assessed by coronary angiography and Glutathione Peroxidase-1 (GPX-1), Paraoxonase-1 (PON-1), Apolipoprotein A-1 (Apo A-1) and GPX-1 genetic variants.

Objectives: This study was designed to investigate the relationship between GPX-1 variant, PON-1 and apoA-1 activity in healthy individuals and patients with CAD based on coronary angiographic severity scoring systems.

Methods: A case-control study of 75 patients (58 males, 17 females) with CAD (patients were selected from those awaiting coronary angiography) and age and sex matched 75 healthy volunteers as control subjects. Fasting venous blood samples were collected from all subjects for laboratory analysis of erythrocyte total GPX, erythrocyte GPX-1, serum PON-1 activity, Apo A-1 level and GPX-1 Pro198Leu polymorphisms.

Results: Data revealed that the serum PON-1 concentration, total erythrocyte GPX and erythrocyte GPX -1 activity were significantly \(p \leq 0.05 \) low in patients when compared to controls. Paraoxonase-1 activity and Apolipoprotein A-1 levels did not show significant correlations with vessel, stenosis, and extent scores. Total erythrocyte GPX
and erythrocyte GPX-1 activities showed significantly strong inverse relationship with vessel, stenosis, and extent scores. Frequency distribution of GPX-1 Pro198Leu (CT) genotype was significantly higher in patients (25.3%) when compared to controls (10.7%) (χ^2 test = 1.019). Results of genotype polymorphism in GPX-1 showed that the Leu198Leu (TT) genotype was not present in our study population. Interestingly, Pro198Leu (CT) genotype showed a 2.84 fold risk for CAD [odds ratio 2.84 (95% CI 1.15 – 6.98), $p = 0.019$] in our study population. The Pro198Leu (CT) genotype carriers in subjects with age \leq 50 years showed significantly higher (6.19 fold) risk for CAD compared to Pro198Pro (CC) genotype carriers in the same age group [odds ratio 6.19 (95% CI 1.1 – 34.3), $p = 0.037$]

Conclusion: Low serum PON-1 concentration, total erythrocyte GPX, and erythrocyte GPX-1 activity are independent risk factors for CAD. Decreased total GPX and GPX-1 activities are associated with increased severity of CAD. The Pro198Pro (CC) genotype is the most prevalent genetic variant of GPX-1 Pro198Leu polymorphism in the study population. However, Leu198Leu (TT) genotype not detected in our study population. The Pro198Leu (CT) genetic variant appeared to be the most significant predictor of CAD. Thus, this may have a future potential in early identification and management subjects with CAD.