A STUDY OF THE VARIATION OF THE QUALITY OF STANDARD LANKA RUBBER –200 (SIR– 20) GRADE MADE OUT OF BLENDS OF SUB STANDARD RAW RUBBER REJECTED FROM CENTRIFUGED LATEX FACTORIES

B/

JEVENDRA GALLADDALAGE NIROSHAN KISHANTHA

1.

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Polymer Science and Technology off the Faculty of Applied Sciences, University of Sri Jayewardanepura, Nugegoda, Sri Lanka on 2009.

i

"The work described in this thesis was carried out by me under the supervision of Dr. L.M.K.Tillekeratne and report on this has not been submitted in whole or part to any university or any other institution for another Degree/Diploma"

(Signed) 96/10/09.....(Date)

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to university for the purpose of evaluation.

Dr.L.M.K.Tillekeratne

Acknowledgement

I wish to express utmost gratitude to my supervisor Dr.L.M.K.Tillekeratne, Senior lecturer of Department of chemistry of the University of Sri Jayewardenepura for his valuable guidance and suggestions to carry out my research as well as for the assistance given to complete this thesis.

I wish to mention here with deep appreciation, the chairman / CEO of C.W.Mackie PLC and the Managing Director of Ceymac Rubber Co. Ltd, by whom leave was granted for following the course and staff of laboratory of the Ceymac Rubber Co.Ltd- Horana for testing TSR properties of my research samples and for running Rheographs.

Also, I wish to thank the heads and staff of Raw Rubber Testing department and Rubber Technology department of the Rubber Research Institute of Sri Lanka, Rathmalana for their assistance to check percentage N of TSR samples and for preparation of test pieces for testing mechanical properties of rubber vulcanizates.

I wish to thank the head and staff of R&D department of AMW –Kaluthara for testing mechanical properties of the rubber vulcanizates.

TABLE OF CONTENTS

	Content	Page
ACK	KNOWLEDGEMENT	iv
LIST	Γ OF TABLES	ix
LIST	r of figures	xiii
ABE	BREVIATIONS	xvii
ABS	STRACT	xviii
CHA	APTER 1	1
1.0	INTRODUCTION	1
1.1	Introduction about TSR	1
1.2	Rubber latex and substandard raw materials	2
	1.2.1. Skim rubber	3
	1.2.2. Sludge (Magnesium Ammonium Phosphate)	5
	1.2.3. TMTD / ZnO preserved latex coagulum	6
	1.2.4. Chemical free Pre – Coagulated latex coagulum (PC)	7
	1.2.5. 3X Brown rubber (In lace form known as FAB)	8
1.3	Environmental pollution occurs due to substandard raw materials	9
1.4	Utilization of substandard raw materials	9
1.5	Difficulties of substandard raw materials handling	10
1.6	Vulcanization system	10
	1.6.1 Sulphur vulcanization	10
CHA	APTER 2	12
2.0	MATERIAL AND EXPERIMENTAL PROCEDURES	12
2.1	Materials	12

	2.1.1 Scrap rubber	12
	2.1.2 3X Brown rubber (In lace form known as FAB)	13
	2.1.3 Skim rubber	13
	2.1.4 Sludge (MAP)	13
	2.1.5 TMTD / ZnO preserved latex coagulum	13
	2.1.6 Chemical free Pre – coagulated latex coagulum (PC)	13
	2.1.7 General rubber ingredients	14
	2.1.7.1 ZnO	.14
	2.1.7.2 Stearic acid	15
	2.1.7.3 Sulphur	15
	2.1.7.4 MBT	15
2.2	Testing procedures	15
	2.2.1 Technical properties of TSR	16
	2.2.1.1 Volatile matter content (% VM)	16
	2.2.1.2 Initial wallace plasticity (P_0)	16
	2.2.1.3 Plasticity Retention Index (PRI)	16
	2.2.1.4 Determination of Ash content	17
	2.2.1.5 Determination of % N content	17
	2.2.1.6 Determination of dirt content	18
	2.2.2 Compound testing	19
	2.2.2.1 Cure characteristics	19
	2.2.2.2 Tensile strength	19
	2.2.2.3 Tear strength	19
	2.2.2.4 Hardness	20

vi

		2.2.2.5	Abrasion loss	20
		2.2.2.6	Elongation at break	20
		2.2.2.7	Specific gravity	21
		2.2.2.8	Modulus @ 300 % elongation	21
2.3	Manu	facturing TSR and	preparation of rubber compounds	21
	2.3.1	Manufacturing T	SR	21
	2.3.2	Preparation of rul	ober compounds	24
		2.3.2.1	Mixing procedure	24
		2.3.2.2	Compression moulding	24
		2.3.2.3	Preparation of rubber compounds to study the	24
			effect of substandard raw materials.	
CHA	PTER	3		28
3.0	Result	s and discussion		28
3.1	The te	chnical properties,	mechanical properties and curing characteristics,	28
	of con	npounds, prepared	out of TSR – 20 rubber sample studied.	
	3.1.1	Technical property	ties of TSR – 20, produced out of single raw	28
		material and raw	material in different proportions	
		3.1.1.1	% Dirt value	32
		3.1.1.2	Initial wallace plasticity (P ₀)	34
		3.1.1.3	Wallace Plasticity Retention Index (PRI)	37
		3.1.1.4	% N value	40
		3.1.1.5	% Ash value	42
		3.1.1.6	% VM value	44

	3.1.2	Cure ch	aracteristi	cs of compounds prepared from TSR – 20,	46
		produce	d out of s	ingle raw material and substandard raw material	
		blended	with 3X	brown rubber in different proportions	
			3.1.2.1	Scorch time and cure time	46
			3.1.2	2.1.1 Scorch time (T _s 2) (min)	47
			3.1.2	2.1.2 Curing time (T _C 90) (min)	49
			3.1.2.2	Minimum and maximum torque values	51
			3.1.2	2.2.1 Minimum torque (M _L)	52
			3.1.2	2.2.2 Maximum torque (M _H)	54
	3.1.3	Mechan	nical prope	erties of compounds, prepared from TSR – 20	56
			3.1.3.1	Tensile strength (Kg / cm ²)	56
			3.1.3.2	Elongation @ break (%)	58
			3.1.3.3	Modulus @ 300 % elongation (Kg / cm^2)	60
			3.1.3.4	Hardness (IRHD)	62
			3.1.3.5	Specific gravity	65
			3.1.3.6	Abrasion loss (mm ³)	67
			3.1.3.7	Tear strength (Kg / cm ²)	69
CHA	APTER	4			71
4 .0	Obser	vations a	nd Conclu	isions	71
CH/	APTER	5			74
5.0	Refer	ences			74

LIST OF TABLES

		Page
1.0	Ingredients for preparation of 25 % TMTD / ZnO dispersion	6
1.1	Vulcanization systems, classified according to the accelerator / sulfur ratio	11
2.1	DRC average of several samples of scrap rubber	12
2.2	Raw rubber properties of 3X brown rubber (FAB) and substandard raw	14
	material samples tested	
2.3	Classification table of 3X brown rubber and substandard raw material	22
	proportions used to produce $TSR - 20$	
2.4	Classification table of used substandard raw materials	22
2.5	TSR - 20, produced out of single raw material without blending	22
2.6	3X brown rubber and skim rubber in different proportions	23
2.7	3X brown rubber and sludge in different proportions	23
2.8	3X brown rubber and TMTD / ZnO preserved latex rubber in different	23
	proportions	
2.9	3X brown rubber and chemical free pre – coagulated rubber in different	23
	proportions	
2.10	ACS 1 formula for compound preparation	24
2.11	3X brown rubber and skim rubber proportions for compounds preparation	25
2.12	3X brown rubber and sludge (MAP) proportions for compounds	25
	preparation	*
2.13	3X brown rubber and TMTD / ZnO preserved latex rubber proportions	26
	for compounds preparation	
2.14	3X brown rubber and chemical free pre – coagulated rubber proportions	26
	for compounds preparation	

2.15	Compounds, prepared from single raw material without blending according	·27
	to the ACS 1 formula	
3.1	Technical properties of TSR – 20, produced out of 3X brown rubber	28
3.2	Technical properties of TSR – 20, produced out of skim rubber	28
3.3	Technical properties of TSR – 20, produced out of sludge	28
3.4	Technical properties of TSR -20 , produced out of TMTD / ZnO	29
	preserved latex rubber	
3.5	Technical properties of $TSR - 20$, produced out of pre – coagulated rubber	29
	(PC)	
3.6	Technical properties of $TSR - 20$, produced out of different proportions of	29
	skim rubber and 3X brown rubber	
3.7	Technical properties of $TSR - 20$, produced out of different proportions of	30
	sludge (Magnesium Ammonium Phosphate) and 3X brown rubber	
3.8	Technical properties of $TSR - 20$, produced out of different proportions of	30
	TMTD / ZnO preserved latex rubber and 3X brown rubber	
3.9	Technical properties of $TSR - 20$, produced out of different proportions of	31
	pre – coagulated rubber and 3X brown rubber	
3.10	Technical properties of $TSR - 20$, produced out of single raw material	31
	without blending	
3. <mark>1</mark> 1	Technical standards of Technically Specified Rubber grades	31
3.12	% Dirt values of TSR -20 , produced out of substandard raw materials and	32
	3X brown rubber in different proportions	
3.13	Initial wallace plasticity (P_o) values of TSR – 20, produced out of	34
	substandard raw materials and 3X brown rubber in different proportions	

X

3.14	Plasticity Retention Index (PRI) values of TSR – 20, produced out of	37
	substandard raw materials and 3X brown rubber in different proportions	
3.15	% N values of TSR -20 , produced out of substandard raw materials and	40
	3X brown rubber mixed to different compositions	
3.16	% Ash values of TSR -20 , produced out of substandard raw materials and	42
	3X brown rubber in different proportions	
3.17	% VM values of TSR -20 , produced out of substandard raw materials and	44
	3X brown rubber in different proportions	
3.18	Cure characteristics (Curing time and Scorch time) of compounds, prepared	46
	from TSR – 20, produced out of single raw material without blending	
	according to the ACS 1 formula	
3.19	Cure characteristics of compounds, prepared from $TSR - 20$, produced out	47
	of 3X brown rubber and substandard raw material in different proportions	
3.20	Maximum and minimum torque values of compounds, prepared from	51
	TSR – 20, produced out of single raw material without blending, according	
	to the ACS 1 formula	
3.21	Maximum torque (M_H) and minimum torque (M_L) values of compounds,	52
	prepared from $TSR - 20$, produced out of 3X brown rubber and substandard	
	raw material in different proportions	
3.22	Mechanical properties of compounds, prepared from TSR – 20, produced out	56
	of single raw material without blending according to the ACS 1 formula	
3.23	Tensile strength (Kg / cm^2) of compounds, prepared from TSR – 20, produced	56
	out of 3X brown rubber and substandard raw material in different proportions	
	according to the ACS 1 formula	

xi

3.24 Elongation @ break (%) of compounds, prepared from TSR – 20, produced
58 out of 3X brown rubber and substandard raw material in different proportions
according to the ACS 1 formula

60

- 3.25 Modulus @ 300 % elongation (Kg / cm²) of compounds, prepared from TSR 20, produced out of 3X brown rubber and substandard raw material in different proportions according to the ACS 1 formula
- 3.26 Hardness (IRHD) of compounds, prepared from TSR 20, produced out of
 3X brown rubber and substandard raw material in different proportions
 according to the ACS 1 formula
- 3.27 Specific gravity of compounds, prepared from TSR 20, produced out of
 3X brown rubber and substandard raw material in different proportions
 according to the ACS 1 formula
- 3.28 Abrasion loss (mm³) of compounds, prepared from TSR 20, produced out
 67 of 3X brown and substandard raw material in different proportions
 according to the ACS 1 formula
- 3.29 Tear strength (Kg / cm²) of compounds, prepared from TSR 20, produced
 69 out of 3X brown rubber and substandard raw material in different proportions
 according to the ACS 1 formula

xii

LIST OF FIGURES

3.1	% Dirt Vs. R / M composition of TSR -20 , produced out of different raw	32
	material proportions	
3.2	% Dirt Vs. Raw material of TSR – 26, produced out of single raw material	33
3.3	P_0 value Vs. R / M composition of TSR – 20, produced out of 3X brown	34
	rubber and substandard raw material in different proportions	
3.4	P_0 value Vs. Raw material of TSR – 20, produced out of single raw material	35
3.5	PRI value Vs. R / M composition of TSR – 20, produced out of 3X brown	37
	rubber and substandard raw material in different proportions	
3.6	PRI value Vs. Raw material of TSR – 20, produced out of single raw material	38
3.7	% N value Vs. R / M composition of TSR -20 , produced out of 3X	40
	brown rubber and substandard raw material in different proportions	
3.8	% N value Vs. Raw material of $TSR - 20$, produced out of single raw material	41
3.9	% Ash Vs. R / M composition of TSR – 20, produced out of 3X brown	43
	rubber and substandard raw material in different proportions	
3.10	% Ash Vs. Raw material of TSR – 20, produced out of single raw material	43
3.11	% VM Vs. R / M composition of TSR – 20, produced out of 3X brown	45
	rubber and substandard raw material in different proportions	
3.12	% VM Vs. Raw material of TSR -20 , produced out of single raw material	45
3.13	Scorch time (T_s2) (min) Vs. R / M composition of compounds, prepared	47
	from TSR -20 , produced out of 3X brown rubber and substandard raw	
	material in different proportions	
3.14	Scorch time (T _s 2) (min) Vs. Raw material of compounds, prepared	48

from TSR - 20, produced out of single raw material

3.15	Curing time (T _C 90) (min) Vs. R / M composition of compounds, prepared	49
	from TSR – 20, produced out of 3X brown rubber and substandard raw	
	material in different proportions	
3.16	Curing time (T_C90) (min) Vs. Raw material of compounds, prepared from	50
	TSR – 20, produced out of single raw material	
3.17	Minimum torque (M_L) (lb in) Vs. R / M composition of compounds,	52
	prepared from TSR – 20, produced out of 3X brown rubber and	
	substandard raw material in different proportions	
3.18	Minimum torque (M _L) (lb in) Vs. Raw material of compounds, prepared	53
	from TSR – 20, produced out of single raw material	
3.19	Maximum torque (M _H) (lb in) Vs. R / M composition of compounds,	54
	prepared from $TSR - 20$, produced out of 3X brown rubber and	
	substandard raw material in different proportions	
3.20	Maximum torque (M _H) (lb in) Vs. Raw material of compounds, prepared	55
	from TSR – 20, produced out of single raw material	
3.21	Tensile strength (Kg / cm ²) Vs. R / M composition of compounds, prepared	57
	from TSR – 20, produced out of 3X brown rubber and substandard raw	
	material in different proportions	
3.22	Tensile strength (Kg / cm^2) Vs. Raw material of compounds, prepared from	57
	TSR – 20, produced out of single raw material	
3.23	Elongation @ break (%) Vs. R / M composition of compounds, prepared	59
	from TSR – 20, produced out of 3X brown rubber and substandard raw	
	material in different proportions	

3.24	Elongation @ break (%) Vs. Raw material of compounds, prepared from	59
	TSR – 20, produced out of single raw material	
3.25	Modulus @ 300 % elongation (Kg / cm^2) Vs. R / M composition of	61
	compounds, prepared from $TSR - 20$, produced out of 3X brown rubber	
	and substandard raw material in different proportions	
3.26	Modulus @ 300 % elongation (Kg / cm ²) Vs. Raw material of compounds,	61
	prepared from $TSR - 20$, produced out of single raw material	
3.27	Hardness (IRHD) Vs. R / M composition of compounds, prepared from	63
	TSR – 20, produced out of 3X brown rubber and substandard raw material	
	in different proportions	
3.28	Hardness (IRHD) Vs. Raw material of compounds, prepared from	63
	TSR – 20, produced out of single raw material	
3.29	Specific gravity Vs. R / M composition of compounds, prepared from	65
	TSR – 20, produced out of 3X brown rubber and substandard raw material	
	in different proportions	
3. <mark>3</mark> 0	Specific gravity Vs. Raw material of compounds, prepared from TSR – 20,	66
	produced out of single raw material	
3.31	Abrasion loss (mm ³) Vs. R / M composition of compounds, prepared from	67
	TSR - 20, produced out of 3X brown rubber and substandard raw material	
	in different proportions	
3.32	Abrasion loss (mm ³) Vs. Raw material of compounds, prepared from	68
	TSR – 20, produced out of single raw material	

XV

- 3.33 Tear strength (Kg / cm²) Vs. R / M composition of compounds, prepared 69 from TSR 20, produced out of 3X brown rubber and substandard raw material in different proportions
- 3.34 Tear strength (Kg / cm²) Vs. Raw material of compounds, prepared from
 70 TSR 20, produced out of single raw material

ABBREVIATION

MAP	Magnesium Ammonium Phosphate
TMTD / ZnO	Tetra Methyl Thiuram Di sulfide / Zinc Oxide
PC	Pre – Coagulated
FAB	Fare Average Brown
DRC	Dry Rubber Content
VFA	Volatile Fatty Acid number
DAHP	Di Ammonium Hydrogen Phosphate
KOH	Potassium Hydroxide
BOD	Biological Oxigen Demand
COD	Chemical Oxigen Demand
TSR	Technically Specified Rubber
EV	Efficient Vulcanization
SEV	Semi Efficient Vulcanization
CV	Conventional Vulcanization
ACS 1	American Chemical Society 1
MBT	Mercapto Benz Thiazole
SLR	Standard Lanka Rubber
SMR	Standard Malaysian Rubber
VM	Volatile Matter
Po	Initial plasticity
PRI	Plasticity Retention Index
ISO	International Standard Organization
Ν	Nitrogen
ASTM	American Society for Testing Materials
R / M	Raw Material
$M_{\rm L}$	Minimum Torque
M _H	Maximum Torque
$T_S 2$	Scorch time
T _C 90	Time for 90 % curing
IRHD	International Rubber Hardness Degree

ABSTRACT

A STUDY OF THE VARIATION OF THE QUALITY OF STANDARD LANKA RUBBER – 20 (SLR – 20) GRADE MADE OUT OF BLENDS OF SUB STANDARD RAW RUBBER REJECTED FROM CENTRIFUGED LATEX FACTORIES

The quality of TSR is depending on the quality of raw materials used for the manufacture. This project is based on the properties of TSR – 20 (SLR – 20) grade which is the most popular TSR grade used in the tyre industry all over the world. Different raw material combinations can be used to produce TSR - 20 within the tolerance limit permitted by the scheme. TSR – 20 (SLR -20) is produced with various raw material combinations using the same processing conditions. Other than the technical properties of TSR, curing characteristics and mechanical properties of the vulcanizates of the compounds, which were prepared out of TSR – 20 rubber produced with different raw material combinations, were studied using vulcanizates made to same compound formula (ACS 1) under same vulcanization conditions.

Even when, substandard raw materials like TMTD / ZnO preserved latex coagulum and chemical free pre – coagulated latex coagulum were blended with 3X brown rubber more than 25 %, the results showed that neither % N nor % dirt has a significant effect on the technical properties and on curing characteristics. How ever blended percentages of TMTD / ZnO preserved latex coagulum and chemical free pre – coagulated latex coagulum with 3X brown rubber are being increased in the blend percentage dirt is being decreased gradually due to containing low percentage dirt in the substandard raw materials. When skim rubber is used up to 15% in the blend with 3X brown rubber, every parameter is within the limit of TSR – 20. But if skim rubber is used above 15% percentage N level exceeds the tolerance limit of 0.6 %.

However, use of Magnesium Ammonium Phosphate (Sludge rubber) even 5 % in the blend all properties vary and the specifications go completely out of TSR - 20 limits.