DOI :10.31357/fapsmst.2010.00473

FORMULATION OF RICE FLOUR BABY RUSK

By

Kottegodage Shyamaalie Lakshmi Perera

2010

MSc

FORMULATION OF RICE FLOUR BABY RUSK

By

Kottegodage Shyamaalie Lakshmi Perera

Thesis submitted in partial fulfillment of the requirement for the degree of Master in food science and technology, Faculty of Graduate Studies, University of Sri Jaywardenepura, Sri Lanka

Declaration

The work described in this thesis was carried out by me at the laboratory of Food science and technology of University of Sri Jayawardenapura under the supervision of Prof. K.K.D.S. Ranaweera and Dr. Indira Wicramasinghe and a report on this thesis has not been submitted to any university for another degree and has not been presented or accepted in any previous application for a degree.

K.S.L.Perera

We, Prof. K.K.D.S. Ranaweera and Dr. Indira Wicramasinghe certify that the statement in preceding page made by the candidate is true and this thesis is suitable for submission to the university for the purpose of evaluation.

Mm- 15/11-2010. Superv-sor

Prof. K.K.D.S. Ranaweera Department of food science and Technology. University of Sri Jayawardenapura,

Gangodawila

Nugegoda

Supervisor

Dr. Indira Wicramasinghe Department of food science and Technology University of Sri Jayawardenapura Gangodawila Nugegoda Dedicated to my loving husband and little daughter.

TABLE OF CONTENT

•

lable	of content	
List of	ftables	111
List of	figures	1V
List of	f graphs	v
Ackno	owledgement	vi
Abstra	act	V11
Chap	ter 01	
1.0	Introduction	1
1.2	Aim of product development	2
1.2.1	Overall objectives of the new product development	2
1.2.2	Specific objectives	2
Chap	ter 02	2
2.0	Literature Survey	2
2.1	Biscuit Technology	2
2.1.1	Dough mixture	3
2.1.2	Rotatory Moulder	4
2.1.3	Rotatory cutter	4
2.1.4	Biscuit baking Oven	2
2.1.5	Cooling conveyor and stacking machine	0
2.1.6	Biscuit Packaging machine	6
2.1.7	Classification of biscuits	7
2.2	Baking	7
2.3	Rice flour	9
2.3.1	Structure of grain	9
2.3.2	Rice classification	11
2.3.3	Gross nutrient composition	11
2.3.4	Starch	15
2.3.5	Protein	16
2.3.6	Lipid	18
2.3.7	Non- starch polysaccharide	20
2.3.8	Volatiles	21
2.3.9	Rice flours and starch	21
2.4	Margarine	22
24.1	Manufacturing and properties	22
2.4.2	Composition	23
2.5	Banana	24
2.5.1	Toxic substances and antinutritional factors	26
2.6	Sucrose	27
2.6.1	Physical and chemical properties	27
2.7	Vanilla	28
2.7.1	Chemistry	29
2.7.2	Production	36

i

2.7.2.1	Natural Production	30
2.7.2.2	Chemical synthesis	31
2.7	Baking powder	32
2.8	Functions of food packagine	33
2.8.1	Packaging has several objectives	33
2.8.2	Flexible films	34
2.8.3	single films	35
2.8.4	Coated films	38
2.8.5	Laminated films	38
Chapte	r 03	
3.0	Methodology	40
3.1	Formulation of rice flour baby rusk	41
3.2	Proximate Analysis	42
3.2.1	Determination of moisture content	42
3.2.2	Determination of total fat	43
3.2.3	Determination of crude protein.	44
3.2.4	Determination of crude fiber	45
3.2.5	Determination of acid detergent fiber	46
3.2.6	Determination of total Ash	47
3.2.8	Determination of peroxide value	48
3.2.9	Determination of acid value	49
3.2.10	Determination of total sugar and reducing sugar	50
3.3	Microbiology	52
3.3.1	Determination of Aerobic plate count	52
3.3.2	Determination of salmonella	53
3.3.3	Determination of Yeast and mold count	65
3.3.4	Determination of coliform count	68
3.3.5	Determination of staphylococcus aureus	71
3.4	Sensory Evaluation	12
3.5	Selection of suitable packaging	13
Chapte	et 04	74
4.0	Results, calculations and Discussion	74
4.1	Baby rusk result	74
4.2.1	Determination of Moisture	76
4.1.2	Determination of ash	78
4.1.3	Determination of crude fiber	80
4.1.4	Determination of acid detergent fiber	82
4.1.5	Determination of total Fat	84
4.1.6	Determination of Crude proteins	86
4.1.7	Determination of peroxide value	88
4.1.8	Determination of free fatty acid	91
4.1.8	Determination of total sugar and reducing sugar	93
4.1.10	Calculation of carbonydrate references	94
42	Microbiological calculations	

ii

4.2.1	Aerobic Plate count		94
4.2.2	Yeast and mold count		95
4.2.3	MPN/E- Coli count		95
4.2.4	Stanhylococcus aureus count		95
	iii		
4.2.5	Salmonella count		95
4.3	Results of minitab evaluation		97
431	Result of Kruskas-wallis test		102
432	Result of Friedman test		102
4.4	Result for selection of suitable packaging		104
4.4.1	Moisture variation with packaging		104
442	Peroxide variation with packaging		105
4.4.3	Aerobic Plate count variation with packaging		106
444	Free fatty acid variation with packaging		107
Cha	oter 05		
5.0	Conclusions		109
6.0	Deferences		110
7.0	Appropriate		
7.0	Appendices		111
7.1	Appendix 2 Friedman test 1		112 -
7.2	Appendix 2- Frictman test		114
7.4	Appendix 2- Kruskal- wains rest		117
7.4	Appendix 5 - colliform count plate (3M interpretation guide)		133
7.5	Appendix 5 – Contoini count plate (3M interpretation guide)		138
7.0	Appendix 0 - Teast and more count plate (on merpreasion galacy)		
List	of tables		
Tabl	e 2.3.1 proximate Value rice grain		13
Tabl	e 2.3.2 Vitamins and Minerals content of rice		14
Tabl	e 2.3.3 Amino acid content of rice		15
Tabl	e 2.3.4 Aminogram of the acetic and basic sub units of rice glutelin and		18
maio	or and minor subunits of prolamin		
Tabl	e 2.3.5. Yield and composition of defatted and protease-amylase treated		20
cell	wall preparations obtained from different histological fractions of	din.	
mill	ing of brown rice		÷.
Tab	e 2.4.1 Varieties of Margarine		24
Tab	e 3.1.1 percentage of ingredients		42
Tab	e 3.3.1 Biochemical and serological reactions of Salmonella.		63
Tab	e3.3.2. Criteria for discarding non-Salmonella cultures.		64
Tab	le 4.1 Variation of moisture with time		75
Tab	le 4.2 consumed HCl amount		84
Tah	le 4.3 variation of peroxide value with time		87
Tah	le 4.4 Free fatty acid variation with time		90
Tah	le 4.5 Sucrose correction factor for lane & Eynon constant volume		92
moo	lification		
mov			

Table 4.6 Titration results	92
Table 4.7 Reducing sugar content and total sugar content	92
Table 4.8 calculation of carbohydrate percentage	93
Table 4.9Aerobic plate count variation with time	94
Table 4.3.1 Result for colour obtained via sensory ballot paper.	97
Table 4.3 2 Result for crispiness obtained via sensory ballot paper.	98
Table 4.3.3 Result for mouth feel obtained via sensory ballot paper.	99
Table 4.3.4 Result for taste obtained via sensory ballot paper.	100
Table 4.3.5 Result for overall acceptability obtained via sensory ballot paper.	101
Table 4.3.6 Result of Kruskal-Wallis Test in Mini Tab statistical software	102
package	
Table 4.3.7 Result of Friedman test	102
Table 4.4.1 Moisture variation with packaging	104
Table 4.4.2 Peroxide value variation with packaging	105
Table 4.4.3 Aerobic plate count with packaging	106
Table 4.4.4 Free fatty acid content with packaging	107
List of figures	
Fig. 2.1.1 dough mixture	3
Fig.2.1.2 Rotator moulder	4
Fig. 2.1.3.Rotatory cutter	4
Fig. 2.1.4 Biscuit baking Oven	5
Fig 2.1.5 Cooling conveyor and stacking Machine	6
Fig. 2.1.6.Biscuit packing machine	6
Fig. 2.3.1 structure of the grain	10
Fig 2.7.1 β-D-glycoside of vanillin	36
Fig. 2.7.2 production of vanillin from guaiacol	51
Fig 3.1 Flow chart for production of rice flour baby rusk	40
Fig 3.3.3.1 lifting of petrifilm	60
Fig 3.3.3.2 placing of 1 ml dilution of sample	6 0
Fig 3.3.3.3 placing the lifted film back	66
Fig 3.3.3.4 spreading of dilution	67
Fig 3.3.3.5 spreading of dilution	67
Fig 3.3.3.6 spreading of dilution	
Fig 3.3.3.7 incubating of petrifilm	68
Fig 3.3.3.7 counting of colonies	69
Fig 3.3.4.1 lifting of petrifilm	69
Fig 3.3.4.2 placing of 1 ml dilution of sample	69
Fig 3.3.4.4 placing the lifted film back	70
Fig 3.3.4.5 spreading of dilution	70
Fig 3.3.4.6 spreading of dilution	70
Fig 3.3.4.7 spreading of dilution	71
Fig 3.3.4.8 Incubating of petri films	71
Fig 3.3.4.9 counting of colonies	

iv

Fig 4.4.1 biscuits in cellophane packaging Fig 4.4.2 biscuit in BOPP Packaging		104 104
List of graph		
Graph 01 Moisture Percentage Vs Time		76
Graph 02 peroxide value Vs time		88
Graph 03 free fatty acid content Vs time		90
Graph 04 CFU/g Vs Time		95
Graph 05 moisture percentage vs time with packaging		105
Graph 06 Peroxide value variations with backaging		106
Graph 07 Aerobic plate count with packaging		107
Graph 09 Error fatty agid content Vis time with packaging		108
Graph 08 Free faily acid content vs time with packaging		100

ACKNOWLEDGEMENT

I wish to express my sincere thanks for the valuable guidance and encouragement given to me throughout this project by my supervisor Dr. Indira Wicramasinghe and Prof. K.K.D.S. Ranaweera of Department of food science, University of SriJayawardenapura.

I am greatly indebted to my husband for the immense support given to me throughout this study. -

I also wish to extend my special thanks to the lab staff department of food science and technology University of Sri Jayawardenapura for the support given to me in making this effort a success.

Formulation of Rice flour BaBy rusk

By

Kottegodage Shyamaalie Lakshmi Perera

ABSTRACT

The aim of this study was to produce a baby rusk by completely replacing wheat flour by rice flour in order to eliminate the health hazards brought by the consumption of wheat flour as well as to add more value to our locally produced rice. Natural banana was used in place of water and flavour substance in this product.

Rice flour, banana, margarine, eggs, sugar, full cream milk powder, vanilla flavour and baking powder were used as the ingredients in the production of the baby rusk.

The product was evaluated for Chemical composition, keeping quality, microbial quality as well as for sensory properties such as colour, mouth feel, taste and overall acceptability. Sensory evaluation was done by using un trained panelists. All chemical and microbiological parameters were found to be in acceptable levels.

Development of flavour variations, addition of vitamin formulas could be done as further research.

Chapter 01

1.0 Introduction

Wheat flour is the most commonly used type of flour in the bakery industry. This is mainly due to its high molding ability which is given by the high content of gluten. Although it contains these acceptable qualities, it also contains certain health hazards. Certain components in wheat flour tend to destroy 'Beta cells' that are responsible for the secretion of Insulin hormone which controls the sugar level of blood. This condition could eventually lead to diabetes which is now becoming common among children as well among infants. Also due to Gluten intolerance disease some people have to depend on gluten free diets. A gluten free diet means avoiding all products that contain wheat, rye and barley, or any of their derivatives. Since rice flour is free of components that destroy 'Beta cells' as well as gluten it becomes a healthy solution for both these conditions.

Rice is rich in lysine which is the first limiting amino acid. It also contains a much higher content of protein compared to wheat flour. It is also richer in B vitamins and mineral content compared to wheat flour.

Banana is a comparatively cheap and abundant fruit in Sri Lanka. Banana starch is easily digestible. This property makes it highly suitable as an ingredient in an infant food. Banana also adds pleasant flavour while providing the food product with useful minerals.

Since this product is prepared by mainly using locally available cheap ingredients, it becomes a nutritious as well as a cost effective product.

1.2 Aim of the product Development

The intended purpose of the development of this product was to provide our people a healthy and cost effective infant food which is rich in nutrients gained by our own local material.

1.2.1 Overall objectives of the new product development

- Development of an infant food which is free of health hazards produced by wheat flour.
- Development of an infant food which is richer in proteins.
- Value addition to locally available ingredients
- Development of a product which is affordable to a wide range of consumer classes.

1.2.2 Specific objectives

- Determination of chemical composition of the product
- Determination of microbiological aspects regarding the shelf life of the product
- Determination of the shelf life of the product.

Chapter 02

2.0 Literature survey

2.1Biscuit Technology

The word biscuit derived from Latin words panis *biscoctus*, for twice-baked. Biscuit industry was started in Briton and first biscuits were dried out rusks which were used for sea journeys.

The biscuit industry today is a well-developed industry which automated machinery from dough mixtures to packaging.

2.1.1 Dough Mixer

The machine is used for mixing various ingredients such as flour, sugar, fat, water, and other chemicals for making hard, soft or fermented dough for making biscuits.

A base plate over which two side frames are fitted for taking the load of mixing chamber which is fitted on side frames. In the mixing chamber two Z/sigma type-mixing blades are fitted which rotate at different speeds in opposite direction to mix various types of soft/hard dough for achieving required glutton of dough.