Performance of lower grades of natural rubber in tyre tread compounds

by

M.G.K. Pushpakumari

Supervised by Dr. W.M.G. Seneviratne

This thesis was submitted in partial fulfillment of the requirement for the Master Degree Program in Polymer Science and Technology of the Faculty of Applied

Science, University of Jayawardanapura, Sri Lanka

April 2009

The work described in this thesis was carried out by me at the Rubber Research Institute of Sri Lanka, under the supervision of Dr. W.M.G. Seneviratne and a report on this has not been submitted to any university for another degree.

29/10/2009

and .

Date

Signature

I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation.

29-10-2009

Date

Signature

Director-Research (Technology) Research Institute of Sri Lanka Telawala Road Ratmalana.

30/10/2009

Dr Laleen Karunanayake BSc (SJP), PhD (North London) Senior Lecturer Department of Chemistry University of Sri Jayewertherupura This thesis is dedicated to my

dearest parents

Acknowledgement

I would like to extend my gratitude to my supervisor Dr. W.M.G. Seneviratne for his great support rendered throughout my research, including guidance, encouragement and numerous helpful comments and suggestions given me.

My special thanks also go to the lecturers from whom I gained the knowledge about this field.

I also thank the academic staff and technical staff who are working at Rubber Research Institute of Sri Lanka for their numerous supports.

I would like to extend my sincere thank to Dr. Nanda Fernando one of the experts in this field for giving me the permission for getting all the physical properties of the compounds at LOADSTAR Laboratory, supplying compounding ingredients and for his valuable guidance.

Among various others who supported me in numerous ways, and who should not be forgotten include the owner and employees at Kahatuduwa rubber mill, from where I got the lower grade rubbers.

Special thanks also go to my colleagues for their unforgettable, valuable supports.

Abstract

This project focuses on matching cure characteristics and physical properties of different compounds, prepared using different rubber grades such as RSS1, RSS4, TSR 20 and lower grades of processed NR, synthetic rubber SBR, BR and their blends with NR using commercial tyre tread compounds. For this, a typical commercial tyre tread compounding formula presently used by a tyre manufacturing industry was chosen. Preparation of compounds was carried out using the same industrial procedure.

In the first stage of the investigation, the curative system included TBBS (1p.p.h.r.), TMTD (0.2p.p.h.r.), Sulphur (1p.p.h.r.).Since reversion was observed in rheographs in this system, the curatives were subsequently changed. Compounding and curing was carried out without TMTD and the curing system included only TBBS (1.25p.p.h.r.) and Sulphur (1.75p.p.h.r.).

The second stage results were analyzed and results reported in this thesis are based on the evaluation of physical properties of cured compounds and the cost evaluation. A detailed description on rubber grades available in Sri Lanka, production process of the tread compounds and the physical properties tested also included in this thesis.

List of abbreviations

6PPD	N-1, 3-dimethylbutyl-N-phenyl-p-phenylenediamine
BR	Polybutadiene Rubber
Bt-	Benzothiazol-2-yl
CBS	N-Cyclohexylbenzothiazole-2-phenamide
DIN	Deutsches Institute fur Normung (West German test
	Organization)
dNm	DeciNewton meteres
EPDM	Ethylene propylenediene Rubers
EV	Efficient Vulcanization
IIR	Butyl Rubeer
IR	Isoprene Rubber (Synthetic)
IRSG	International rubber study group
MBS	N-Morpholylbenzothiazole-2-sulphenamide
MBT	2-Mercaptobenzothiazole (benzothiazoline-2-thione)
MBTS	Dibenzothiazylle disulphide
NBR	Actrylonitrile butadiene rubber
NR	Natural Rubber
OEM	Original equipment manufactures
phr	Parts perhundred of rubber
PRI	Plasticity Retention Index
RSS	Ribbed Smoked sheets
S	Sulpher

7

SBR	Styrene Butadiene Rubber
SG	Specific gravity
SMR	Standard Malasian rubber
TBBS	N-butylbenzothiazole-2-sulphenamide
TMQ	Polymerized1-2-dihydro-2,2,4-trimethylquinoline
	(AGERITE RESIN D)
TMTD	Tetramethylthiuram disulphide (METHYL TUADS)
TMTD	Tetramethylthiuram disulphide
ts	Softening temperature
ts ₂	Scorch time
TSR	Technically Specified Rubber
ZMBT	Zinc salt of mercaptobenzothiazole(ZETAX)

List of tables

Table		Page
Table 1.1	NR consumption in Radial and bias heavy duty truck tyres	19
Table 2.1	Differences in Properties of synthetic rubbers	25
Table 2.2	Rubber Production by types (MT) in Sri Lanka	28
Table 2.3	Sri Lanka Production and consumption and imports of	30
	Natural Rubber	
Table 2.4	Typical tyre composition by weight	33
Table 2.5	Typical elastomers in passenger and tuck tyres	47
Table 2.6	The percentage of die swell and extrusion pressure for	53
	unvulcanised compounded blends of NR/BR, NR/SBR and	
	SBR/BR	
Table 3.1	Chemicals used	55
Table 3.2	Compound preparation Formula	56
Table 3.3	Compounding cycle	57
Table 3.4	Models of equipments	60
Table 4.1	Raw rubber properties- test results	65
Table 4.2	Properties expected for tyre treads	68
Table 4.3	Cure characteristics of different compounds	68
Table 4.4	Compound Quality Analysis Report - unaged	69
Table 4.5	Compound Quality Analysis Report-aged	70
Table 4.6	Physical property comparison	71
Table 4.7	Rubber prices	75
Table 4.8	Costs of lower grade rubbers	76

Table 4.9	Cost of chemicals	76
Table 4.10	Total Costs of compounds Rs/kg	76
Table 4.11	Costs of blends	77

List of Figures

Figure		Page
Figure 2.1	Production process of synthetic rubber	22
Figure 2.1	Major rubber producing countries and their	26
	local production(of NR-2008)	
Figure 2.3	NR production (thousand tonnes)- largest	27
	producers, 1961-2005	
Figure2.4	Share (%) of natural rubber in rubber	31
	consumption in different countries, 2008	
Figure 2.5	Breakdown by major sectors (NR and SR)	32
Figure 2.6	Components of tyre	40
Figure 2.7	Tyre manufacture flow sheet	43
Figure 4.1	Raw rubber property evaluation-1	66
Figure 4.2	Raw rubber property evaluation-2	67
Figure 4.3	comparisons of tensile strength values	72
Figure 4.4	Comparision of hardness values	73
Figure 4.5	Comparison of modulus	74
Figure 4.6	Fluctuation of rubber prices	75

Contents

		page
CHAPTER 1	INTRODUCTION	16
CHAPTER 0	2 LITERATURE REVIEW	20
2.1	Production and processing of Natural Rubber	20
2.2	Description on SR production	22
2.2.1	Physical property evaluation of different types of SR	23
2.3	Availability of rubber in Sri Lanka	25
2.4	Production statistics of NR	26
2.5	Consumption Statistics of NR and SR	28
2.6	NR and SR Consumption in tyre sector	31
2.7	Effect of non rubber particles in rubber	33
2.7.1	Improvements in raw rubber properties	34
2.8	Detail description of the main types of Raw materials used in	35
	the preparation of rubber compounds.	
2.8.1	Fillers	35
2.8.2	Aromatic Oil	35
2.8.3	Curative system	36
2.8.4	Preparation of Compounds.	37
	Rubber compounding	
2.8.5	Production process Technology	38
2.8.6	Rubber Mastication	38
2.8.7	Internal mixer	39
2.8.8	Two roll mill	39
2.9	Tyre production process and tyre components	39

2.9.1	Components of the tyre	39
2.10	Rubber Blends	45
2.10.1	Overview of elastomeric blends in tyres.	45
2.10.2	Compatibility and morphology of blends	47
2.11	NR/BR Blends	48
2.11.1	Dynamic properties and ageing properties	49
2.11.2	Traction	49
2.12	Effects of mixing procedure on the properties of NR/BR	49
	blends	
2.12.2	The interactions of the activator system in the NR/BR blends	50
2.12.3	Curing Characteristics and Physical Properties of BR/NR	51
	blends.	
2.13	Chemical structures of SBR and BR influence on properties	53
CHAPTER 03 MATERIAL USED AND EXPERIMENTAL 5		
	PROCEDURE	
3.1	Materials used in the	55
3.1.1	Chemicals	55
3.1.2	Rubbers	56
3.2	Compound preparation	
3.2.1	Compound preparation formula	56
3.2.2	Compounding cycle	57
3.3	Testing methods and procedures	57
3.3.1	Raw rubber properties	57
3.3.1.1	Nitrogen Content of Rubber	57

3.3.1.2	Dirt Content of Rubber	58
3.3.1.3	Ash Content of Rubber	58
3.3.1.4	Volatile Matter Content of Rubber	59
3.3.1.5	Plasticity retention Index	59
3.3.1.6	Mooney viscosity	60
3.3.2	Models of Equipments used	60
3.3.3	Measurements of Curing (Rheometer) Characteristics	60
3.3.4	Testing of physical properties	61
3.3.4.1	Specific gravity/density	61
3.3.4.2	Tensile properties	61
3.3.4.3	Stress Strain Curve	61
3.3.4.4	Compression set	62
3.3.4.5	Abrasion Resistance	62
3.3.4.6	Hardness	63
3.3.4.7	Tear resistance	63
3.3.4.8	Rebound Resilience	64
	CHAPTER 04 RESULTS	65
4.1	Raw Rubber Properties	65
4.1.1	Test results	65
4.1.2	Raw rubber property evaluation	65
4.2	Selection of the Compounding formula	67
4.3	The Properties of Conventional Tyre Tread Compound	68
4.4	Cure characteristics of different compounds	68
4.5	Compound Quality Analysis Report	69
4.6	Physical property comparison and discussion	70

4.7	Cost evaluation	75
4.7.1	Cost of each rubber grade used	75
4.7.2	Cost of each chemical used	76
4.7.3	Cost evaluation of each compound	76
4.7.4	Cost evaluation of blends	77
	CONCLUSION	78
	FUTURE WORK	79
	CHAPTER 06	80

REFERENCES

15